CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4379-4394.doi: 10.11949/0438-1157.20200677

• Reviews and monographs • Previous Articles     Next Articles

Application of ionic liquid in extraction and separation of rare earth

Daoguang WANG1,2(),Junfeng WANG1,2(),Xiangping ZHANG1,2,Yilin WANG3,Xiaofei ZHANG3   

  1. 1.Beijing Key Laboratory of Ionic Liquids Clean Process/State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2.Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
    3.State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
  • Received:2020-06-02 Revised:2020-08-13 Online:2020-10-05 Published:2020-08-15
  • Contact: Junfeng WANG E-mail:dgwang@ipe.ac.cn;junfwang@ipe.ac.cn

Abstract:

The extraction and separation of rare earth elements is one of the key steps to obtain high-purity single rare earths. The development of new materials and new processes with high-efficiency separation capabilities for rare earth elements is a hot spot for scientific and technological workers worldwide. As a representative new material, ionic liquid has unique physical and chemical properties such as non-volatile, non-flammable, good stability, and adjustable structural properties. In recent years, its application in the field of rare earth element extraction and separation has received extensive attention.This paper provides a systematical review of the publications in recent years reporting the application of ILs in extraction and separation of rare earth (RE) that is essential to obtain high-purity RE products. The ILs-based extraction and separation by use of non-functional and/or functional ILs were here reviewed and discussed in terms of extraction/stripping behaviors, separation performance and mechanisms. The challenges and future directions for the development and application of ILs-based extraction on RE separation were discussed finally.

Key words: rare earth, extraction, separation, ionic liquid, green technology, synergistic system

CLC Number: 

  • TQ 028.8
1 Binnemans K, Jones P T, Müller T, et al. Rare earths and the balance problem: how to deal with changing markets?[J]. J. Sustain. Metall., 2018, 4(1): 126-146.
2 Wang K, Adidharma H, Radosz M, et al. Recovery of rare earth elements with ionic liquids[J]. Green Chem., 2017, 19(19): 4469-4493.
3 Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437.
4 Cheisson T, Schelter E. Rare earth elements: Mendeleev􀆳s bane, modern marvels[J]. Science, 2019, 363(6426): 489-493.
5 Jowitt S M, Werner T T, Weng Z, et al. Recycling of the rare earth elements[J]. Curr. Opin. Green Sustain. Chem., 2018, 13: 1-7.
6 Binnemans K, Jones P T, Blanpain B, et al. Recycling of rare earths: a critical review[J]. J. Clean. Prod., 2013, 51: 1-22.
7 李振民, 刘一力, 孙菊英, 等. 世界稀土需求趋势分析[J]. 稀土, 2017, 38(3): 149-158.
Li Z M, Liu Y L, Sun J Y, et al. Analysis of the global rare earth consumption trend [J]. Chinese Rare Earths, 2017, 38(3): 149-158.
8 Li D. Development course of separating rare earths with acid phosphorus extractants: a critical review[J]. J. Rare Earths, 2019, 37(5): 468-486.
9 焦芸芬, 何小林, 廖春发, 等. 近十年来重稀土元素分离与提纯技术研究进展[J]. 稀土, 2013, 34(4): 74-79.
Jiao Y F, He X L, Liao C F, et al. Progress of research on separation and purification of heavy rare earth elements in recent decade[J]. Chinese Rare Earths, 2013, 34(4): 74-79.
10 Chen L, Wu Y, Dong H, et al. An overview on membrane strategies for rare earths extraction and separation[J]. Sep. Purif. Technol., 2018, 197: 70-85.
11 Liu T, Chen J, Li H, et al. Further improvement for separation of heavy rare earths by mixtures of acidic organophosphorus extractants[J]. Hydrometallurgy, 2019, 188: 73-80.
12 许晓芳, 谭全银, 刘丽丽, 等. 稀土元素分离与提纯技术研究现状及展望[J]. 环境污染与防治, 2019, 41(7): 844-851.
Xu X F, Tan Q Y, Liu L L, et al. A review on development and prospect of rare earth elements separation and purification technologies[J]. Environ. Pollut. Ctrl., 2019, 41(7): 844-851
13 Chen J. Application of Ionic Liquids on Rare Earth Green Separation and Utilization[M]. Heidelberg: Springer, 2016: 12-13.
14 Sun X, Waters K E. Development of industrial extractants into functional ionic liquids for environmentally friendly rare earth separation[J]. ACS Sustain. Chem. Eng., 2014, 2(7): 1910-1917.
15 Matsumiya M, Kikuchi Y, Yamada T, et al. Extraction of rare earth ions by tri-n-butylphosphate/phosphonium ionic liquids and the feasibility of recovery by direct electrodeposition[J]. Sep. Purif. Technol., 2014, 130: 91-101.
16 Ren S, Hou Y, Zhang K, et al. Ionic liquids: functionalization and absorption of SO2[J]. Green Energy Environ., 2018, 3(3): 179-190.
17 Wang G, Li Z, Li C, et al. In-situ generated ionic liquid catalyzed aldol condensation of trioxane with ester in mild homogeneous system[J]. Green Energy Environ., 2019, 4(3): 293-299.
18 Kubota F, Baba Y, Goto M. Application of ionic liquids for the separation of rare earth metals[J]. Solvent Extr. Res. Dev., 2012, 19: 17-28.
19 Wang L Y, Guo Q J, Lee M S. Recent advances in metal extraction improvement: mixture systems consisting of ionic liquid and molecular extractant[J]. Sep. Purif. Technol., 2019, 210: 292-303.
20 Guo L, Chen J, Shen L, et al. Highly selective extraction and separation of rare earths(Ⅲ) using bifunctional ionic liquid extractant[J]. ACS Sustain. Chem. Eng., 2014, 2(8): 1968-1975.
21 Jensen M P, Neuefeind J, Beitz J V, et al. Mechanisms of metal ion transfer into room-temperature ionic liquids:  the role of anion exchange[J]. J. Am. Chem. Soc., 2003, 125(50): 15466-15473.
22 Atanassova M, Kurteva V, Lubenov L, et al. Comparing extraction, synergism and separation of lanthanoids using acidic and neutral compounds in chloroform and one ionic liquid: is the latter always “better”?[J]. RSC Adv., 2014, 4(73): 38820-38829.
23 Huddleston J G, Willauer H D, Swatloski R P, et al. Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction[J]. Chem. Commun., 1998, 16: 1765-1766.
24 Nakashima K, Kubota F, Maruyama T, et al. Ionic liquids as a novel solvent for lanthanide extraction[J]. Anal. Sci., 2003, 19(8): 1097-1098.
25 Nakashima K, Kubota F, Maruyama T, et al. Feasibility of ionic liquids as alternative aeparation media for industrial solvent extraction processes[J]. Ind. Eng. Chem. Res., 2005, 44(12): 4368-4372.
26 Turgis R, Arrachart G, Dubois V, et al. Performances and mechanistic investigations of a triphosphine trioxide/ionic liquid system for rare earth extraction[J]. Dalton T., 2016, 45(3): 1259-1268.
27 Kubota F, Shimobori Y, Baba Y, et al. Application of ionic liquids to extraction separation of rare earth metals with an effective diglycol amic acid extractant[J]. J. Chem. Eng. Jpn., 2011, 44(5): 307-312.
28 Sun X, Bell J R, Luo H, et al. Extraction separation of rare-earth ions via competitive ligand complexations between aqueous and ionic-liquid phases[J]. Dalton T., 2011, 40(31): 8019-8023.
29 Shen Y, Li W, Wu J, et al. Solvent extraction of lanthanides and yttrium from aqueous solution with methylimidazole in an ionic liquid[J]. Dalton T., 2014, 43(26): 10023-10032.
30 Zhao L, Dong Z, Ma G, et al. Solution extraction of several lanthanides from nitric acid with isohexyl-BTP in [Cnmim][NTf2] ionic liquid[J]. J. Rare Earths, 2015, 33(11): 1182-1188.
31 Rout A, Binnemans K. Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids[J]. Dalton T., 2015, 44(3): 1379-1387.
32 Shimojo K, Kurahashi K, Naganawa H. Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids[J]. Dalton T., 2008, 37: 5083-5088.
33 Dietz M L, Dzielawa J A, Laszak I, et al. Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids[J]. Green Chem., 2003, 5(6): 682-685.
34 Hidayah N N, Abidin S Z. The evolution of mineral processing in extraction of rare earth elements using liquid-liquid extraction: a review[J]. Miner. Eng., 2018, 121: 146-157.
35 Sun P, Huang K, Liu H. Separation of adjacent rare earth elements enhanced by “external push-pull” extraction system: an example for the separation of Pr and Nd[J]. Hydrometallurgy, 2019, 189: 105136.
36 Baba Y, Kubota F, Kamiya N, et al. Recent advances in extraction and separation of rare-earth metals using ionic liquids[J]. J. Chem. Eng. Jpn., 2011, 44(10): 679-685.
37 Sun X, Luo H, Dai S. Mechanistic investigation of solvent extraction based on anion-functionalized ionic liquids for selective separation of rare-earth ions[J]. Dalton T., 2013, 42(23): 8270-8275.
38 Rout A, Kotlarska J, Dehaen W, et al. Liquid-liquid extraction of neodymium(Ⅲ) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation[J]. Phys. Chem. Chem. Phys., 2013, 15(39): 16533-16541.
39 Garvey S L, Dietz M L. Ionic liquid anion effects in the extraction of metal ions by macrocyclic polyethers[J]. Sep. Purif. Technol., 2014, 123: 145-152.
40 Turanov A N, Karandashev V K, Yarkevich A N. Extraction of rare-earth elements from hydrochloric acid by carbamoyl methyl phosphine oxides in the presence of ionic liquids[J]. Russ. J. Inorg. Chem., 2018, 63(3): 406-413.
41 Yang F, Baba Y, Kubota F, et al. Extraction and separation of rare earth metal ions with DODGAA in ionic liquids[J]. Solvent Extr. Res. Dev., 2012, 19: 69-76.
42 Yang F, Kubota F, Baba Y, et al. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system[J]. J. Hazard. Mater., 2013, 254/255: 79-88.
43 Yin X, Tian X, Wu Y, et al. Recycling rare earth elements from waste cathode ray tube phosphors: experimental study and mechanism analysis[J]. J. Clean. Prod., 2018, 205: 58-66.
44 Jensen M P, Borkowski M, Laszak I, et al. Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid[J]. Sep. Sci. Technol., 2012, 47(2): 233-243.
45 Zuo Y, Liu Y, Chen J, et al. The separation of cerium(Ⅳ) from nitric acid solutions containing thorium(Ⅳ) and lanthanides(Ⅲ) using pure [C8mim]PF6 as extracting phase[J]. Ind. Eng. Chem. Res., 2008, 47(7): 2349-2355.
46 Gras M, Papaiconomou N, Chainet E, et al. Separation of cerium(Ⅲ) from lanthanum(Ⅲ), neodymium(Ⅲ) and praseodymium(Ⅲ) by oxidation and liquid-liquid extraction using ionic liquids[J]. Sep. Purif. Technol., 2017, 178: 169-177.
47 Zuo Y, Liu Y, Chen J, et al. Extraction and recovery of cerium(Ⅳ) along with fluorine(Ⅰ) from bastnasite leaching liquor by DEHEHP in [C8mim]PF6[J]. J. Chem. Technol. Biot., 2009, 84(7): 949-956.
48 Larsson K, Binnemans K. Separation of rare earths by split-anion extraction[J]. Hydrometallurgy, 2015, 156: 206-214.
49 Banda R, Forte F, Onghena B, et al. Yttrium and europium separation by solvent extraction with undiluted thiocynate ionic liquids[J]. RSC Adv., 2019, 9(9): 4876-4883.
50 Regadío M, Vander Hoogerstraete T, Banerjee D, et al. Split-anion solvent extraction of light rare earths from concentrated chloride aqueous solutions to nitrate organic ionic liquids[J]. RSC Adv., 2018, 8(60): 34754-34763.
51 Kumari A, Sahu K K, Sahu S K. Solvent extraction and separation of Nd, Pr and Dy from leach liquor of waste NdFeB magnet using the nitrate form of mextral(R) 336At in the presence of aquo-complexing agent EDTA[J]. Metals Open Access Metallurgy J., 2019, 9(2): 269-284.
52 Wang X, Huang K, Cao W, et al. Enhanced separation of praseodymium and neodymium by kinetic “push and pull” system of [A336][NO3]-DTPA in a column extractor[J]. J. Rare Earths, 2020, 38(2): 203-212.
53 Sun P, Huang K, Liu H. The nature of salt effect in enhancing the extraction of rare earths by non-functional ionic liquids: synergism of salt anion complexation and Hofmeister bias[J]. J. Colloid Interface Sci., 2019, 539: 214-222.
54 Hunter J P, Dolezalova S, Ngwenya B T, et al. Understanding the recovery of rare-earth elements by ammonium salts[J]. Metals, 2018, 8(6): 465-477.
55 Zhu M, Zhao J, Li Y, et al. An ionic liquid-based synergistic extraction strategy for rare earths[J]. Green Chem., 2015, 17(5): 2981-2993.
56 Xiong Y, Kuang W, Zhao J, et al. Ionic liquid-based synergistic extraction of rare earths nitrates without diluent: typical ion-association mechanism[J]. Sep. Purif. Technol., 2017, 179: 349-356.
57 Zhao J, Yu Z, Liu H. Extraction of rare earths by undiluted [P66614][NO3] and DEHEHP, and the recovery of rare earths from lamp phosphors[J]. J. Mater. Cycles Waste Manage., 2019, 21(6): 1518-1525.
58 Sun X, Ji Y, Hu F, et al. The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction[J]. Talanta, 2010, 81(4): 1877-1883.
59 Sun X, Luo H, Dai S. Solvent extraction of rare-earth ions based on functionalized ionic liquids[J]. Talanta, 2012, 90: 132-137.
60 Sun X, Do-Thanh C L, Luo H, et al. The optimization of an ionic liquid-based TALSPEAK-like process for rare earth ions separation[J]. Chem. Eng. J., 2014, 239: 392-398.
61 Dong Y, Sun X, Wang Y, et al. The development of an extraction strategy based on EHEHP-type functional ionic liquid for heavy rare earth element separation[J]. Hydrometallurgy, 2015, 157: 256-260.
62 Dutta B, Ruhela R, Yadav M, et al. Liquid-liquid extraction studies of gadolinium with N-methyl-N,N,N-trioctyl ammonium-bis-(2-ethylhexyl) phosphonate—task specific ionic liquid[J]. Sep. Purif. Technol., 2017, 175: 158-163.
63 Quinn J E, Soldenhoff K H, Stevens G W. Solvent extraction of rare earths using a bifunctional ionic liquid(1): Interaction with acidic solutions[J]. Hydrometallurgy, 2017, 169: 306-313
64 Quinn J E, Soldenhoff K H, Stevens G W. Solvent extraction of rare earth elements using a bifunctional ionic liquid(2): Separation of rare earth elements[J]. Hydrometallurgy, 2017, 169: 621-628.
65 Shen L, Chen J, Chen L, et al. Extraction of mid-heavy rare earth metal ions from sulphuric acid media by ionic liquid [A336][P507][J]. Hydrometallurgy, 2016, 161: 152-159.
66 Padhan E, Sarangi K. Recovery of Nd and Pr from NdFeB magnet leachates with bi-functional ionic liquids based on Aliquat 336 and Cyanex 272[J]. Hydrometallurgy, 2017, 167: 134-140.
67 Kumari A, Sinha M K, Sahu S K, et al. Solvent extraction and separation of trivalent lanthanides using Cyphos IL 104, a novel phosphonium ionic liquid as extractant[J]. Solvent Extr. Ion Exch., 2016, 34(5): 469-484.
68 Belova V V, Voshkin A A, Kholkin A I, et al. Solvent extraction of some lanthanides from chloride and nitrate solutions by binary extractants[J]. Hydrometallurgy, 2009, 97(3): 198-203.
69 Pavón S, Fortuny A, Coll M T, et al. Neodymium recovery from NdFeB magnet wastes using Primene 81R·Cyanex 572 IL by solvent extraction[J]. J Environ. Manage., 2018, 222: 359-367.
70 Chen L, Chen J, Li H, et al. Applying basic research on a dialkylphosphoric acid based task-specific ionic liquid for the solvent extraction and membrane separation of yttrium[J]. Sep. Purif. Technol., 2018, 207: 179-186.
71 Wang W, Yang H, Cui H, et al. Application of bifunctional ionic liquid extractants [A336][CA-12] and [A336][CA-100] to the lanthanum extraction and separation from rare earths in the chloride medium[J]. Ind. Eng. Chem. Res., 2011, 50(12): 7534-7541.
72 Yang H, Wang W, Cui H, et al. Extraction mechanism of rare earths with bifuncional ionic liquids(bif-ILs) [A336][CA-12]/[A336][CA-100] in nitrate medium[J]. Chinese J. Anal. Chem., 2011, 39(10): 1561-1566.
73 Dong Y, Guo X, Wang Y, et al. A separation processing for industrial rare earth feed solution by phosphonium ionic liquid type saponification strategy[J]. J. Rare Earths, 2017, 35(3): 290-299.
74 Wang Y, Huang C, Li F, et al. The development of sustainable yttrium separation process from rare earth enrichments using bifunctional ionic liquid[J]. Sep. Purif. Technol., 2016, 162: 106-113.
75 Huang C, Huang B, Dong Y, et al. Efficient and sustainable regeneration of bifunctional ionic liquid for rare earth separation[J]. ACS Sustain. Chem. Eng., 2017, 5(4): 3471-3477.
76 Su X, Guo X, Zhao Z, et al. An efficient and sustainable [P6,6,6,14]2[BDOAC] ionic liquid based extraction-precipitation strategy for rare earth recovery[J]. Chem. Eng. Res. Des., 2018, 136: 786-794.
77 Zhou H, Wang Y, Guo X, et al. The recovery of rare earth by a novel extraction and precipitation strategy using functional ionic liquids[J]. J. Mol. Liq., 2018, 254: 414-420.
78 Obón E, Fortuny A, Coll M T, et al. Experimental and modelling studies of neodymium solvent extraction from chloride media with methyl-tri(octyl/decyl)ammonium oleate ionic liquid diluted in kerosene[J]. Hydrometallurgy, 2017, 174: 216-226.
79 Obón E, Fortuny A, Coll M T, et al. Mathematical modelling of neodymium, terbium and dysprosium solvent extraction from chloride media using methyl-tri(octyl/decyl)ammonium oleate ionic liquid as extractant[J]. Hydrometallurgy, 2017, 173: 84-90.
80 Yang H, Chen J, Wang W, et al. Extraction mechanism of rare earths from chloride acidic solution with ammonium-bifunctionalized ionic liquid extractants[J]. Sci. China Chem., 2016, 59: 532-537.
81 Maria L, Cruz A, Carretas J M, et al. Improving the selective extraction of lanthanides by using functionalised ionic liquids[J]. Sep. Purif. Technol., 2020, 237: 116354.
82 Khodakarami M, Alagha L. Separation and recovery of rare earth elements using novel ammonium-based task-specific ionic liquids with bidentate and tridentate O-donor functional groups[J]. Sep. Purif. Technol., 2020, 232: 115952.
83 Chen Y, Wang H, Pei Y, et al. Selective separation of scandium(Ⅲ) from rare earth metals by carboxyl-functionalized ionic liquids[J]. Sep. Purif. Technol., 2017, 178: 261-268.
84 Guo X, Yao W, Chen Y, et al. PEG-functionalized ionic liquids: a class of liquid materials for highly efficient extraction of rare earth metals from aqueous solutions[J]. J. Mol. Liq., 2017, 236: 308-313.
85 Sun X Q, Waters K E. The adjustable synergistic effects between acid-base coupling bifunctional ionic liquid extractants for rare earth separation[J]. AIChE J., 2014, 60(11): 3859-3868.
86 Sun X, Dong Y, Wang Y, et al. The synergistic extraction of heavy rare earth elements using EHEHP-type and BTMPP-type functional ionic liquids[J]. RSC Adv., 2015, 5(61): 49500-49507.
87 Zhao Z, Lyu H, Guo X, et al. The synergistic extraction by combined ammonium and phosphonium type ionic liquids for rare earth elements separation[J]. Hydrometallurgy, 2017, 174: 234-247.
88 Dong Y, Sun X, Wang Y, et al. Reversed micelle synergistic extraction from phosphonium ionic liquid extractants in diluent for rare earth[J]. AIChE J., 2016, 62(6): 2163-2169.
89 Rout A, Binnemans K. Liquid-liquid extraction of europium(Ⅲ) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid[J]. Dalton T., 2014, 43(4): 1862-1872.
90 Rout A, Binnemans K. Solvent extraction of neodymium(Ⅲ) by functionalized ionic liquid trioctylmethylammonium dioctyl diglycolamate in fluorine-free ionic liquid diluent[J]. Ind. Eng. Chem. Res., 2014, 53(15): 6500-6508.
91 Sun X, Waters K E. Synergistic effect between bifunctional ionic liquids and a molecular extractant for lanthanide separation[J]. ACS Sustain. Chem. Eng., 2014, 2(12): 2758-2764.
92 Chen J, Huang C, Wang Y, et al. Extraction behavior of bifunctional ionic liquid [N1888][SOPAA] and TBP for rare earth elements[J]. J. Rare Earths, 2016, 34(12): 1252-1259.
[1] Jiaxin LIU, Yu XU, Er HUA. Structure and hydrogen bonding study on acylamino acid protic ionic liquids composed of 2-N-ethylhexylethylenediaminim cation with acylalanineate anions [J]. CIESC Journal, 2020, 71(S1): 15-22.
[2] Bowen LIU, Shuai DENG, Shuangjun LI, Li ZHAO, Zhenyu DU, Lijin CHEN. Experimental investigation on energy-efficiency performance of temperature swing adsorption system for CO2 capture [J]. CIESC Journal, 2020, 71(S1): 382-390.
[3] Guoyu WEN, Wei WANG, Rui XIE, Xiaojie JU, Zhuang LIU, Liangyin CHU. Recent progress of hydrogel materials in the field of enrichment and separation of metal ions [J]. CIESC Journal, 2020, 71(9): 3866-3875.
[4] Shuainan ZHAO, Chaoqun YAO, Zhikai LIU, Qiang ZHANG, Guangwen CHEN, Quan YUAN. Process intensification of high viscosity extraction system in microreactor via ultrasound-driven microbubbles [J]. CIESC Journal, 2020, 71(9): 4152-4160.
[5] Zhongyi HE, Guangyue JIA, Mengmeng ZHANG, Jincan YAN, Liping XIONG, Hongbing JI. Tribological performance of hexagonal boron nitride supported ionic liquid lubricant additives [J]. CIESC Journal, 2020, 71(9): 4303-4313.
[6] Long TIAN, Ting LIU, Kening SUN. Research progress of graphene oxide membrane for water purification [J]. CIESC Journal, 2020, 71(9): 4112-4130.
[7] Zhikang LI, Luwei SHANG, Miaomiao NIE, Wensheng DENG, Jing TAN. Extraction of formic acid with G/O/W microdispersion system [J]. CIESC Journal, 2020, 71(9): 4219-4227.
[8] Xiaobin JIANG, Guoxin SUN, Gaohong HE. Research progress of high-efficiency membrane distillation crystallization process [J]. CIESC Journal, 2020, 71(9): 3905-3918.
[9] Puxu LIU, Chaohui HE, Libo LI, Jinping LI. Stable mixed metal-organic framework for efficient C2H6/C2H4 separation [J]. CIESC Journal, 2020, 71(9): 4211-4218.
[10] Yi GAO, Yahui CAO, Jieping FAN. Study on crystallization separation of ursolic acid and oleanolic acid in ionic liquid [J]. CIESC Journal, 2020, 71(8): 3633-3643.
[11] Dongling WANG, Wenjin WANG, Zifang PENG, Ying XU, Jianguo LIU, Haiyong WANG, Chenguang WANG, Qi ZHANG, Longlong MA. Structure characterization of pine lignin extracted by different alcohol solvents [J]. CIESC Journal, 2020, 71(8): 3761-3769.
[12] Yuanyuan CAI,Baitao GUO,Weihong XING,Congjie GAO. Progress research on development of membrane technology and materials for health industry [J]. CIESC Journal, 2020, 71(7): 2921-2932.
[13] Yajie WANG,Lei LI,Qian ZHANG,Qian LI,Wangliang LI. Progress of magnetically responsive membranes [J]. CIESC Journal, 2020, 71(7): 2933-2944.
[14] Li HE, Xiong ZOU, Haotian YE, Xiangqin LI, Hongguang DONG. Measurement and correlation of liquid-liquid equilibrium data for o-cresol-m-xylene-ethylene glycol [J]. CIESC Journal, 2020, 71(7): 2993-2999.
[15] Chong YANG, Xufeng LIN, Jinfeng ZHANG, Hong CHEN, Yepeng XIAO, Hui WANG, Lihua CHENG, Xinping OUYANG. Measurement and correlation of liquid-liquid equilibrium data for n-hexane- isopropanol azeotropic system [J]. CIESC Journal, 2020, 71(7): 3009-3017.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HAN Jin, ZHU Tong, IMAI Tsuyoshi, XIE Liyang, XU Chenghai, NOZAKI Tsutomu. Solubilization of excess sludge by high speed rotary disk[J]. CIESC Journal, 2008, 59(2): 478 -483 .
[2] ZHENG KeqingZHANG XuejunTIAN XinjianQIU Limin. Heat transfer performance of a single air bubble in direct contact ice slurry generator[J]. , 2010, 61(S2): 58 -61 .
[3] LIU Zhiping, HUANG Shiping, WANG Wenchuan. MOLECULAR COMPUTATIONAL SCIENCE: NEW PARADIGM OF CHEMICAL ENGINEERING[J]. CIESC Journal, 2003, 54(4): 464 -476 .
[4] Zhu Zibin and Ma Zhihua Lin Shiying, Mitsuho Hirato and (East China University of Science and Technology, Masayuki Horio Shanghai, 200237) (Tokyo University of Agriculture and Industry, Tokyo 184, Japan). CHARACTERISTICS OF COAL CHAR GASIFICATION AT HIGH TEMPERATURE (Ⅱ) THE EFFECT OF PORE STRUCTURE ON COAL CHAR GASIFICATION[J]. , 1994, 45(2): 155 -161 .
[5] . Catalytic oxidation of dimethyl ether to downstream products(Ⅰ) Over modified HZSM-5 zeolite catalysts[J]. , 2007, 58(4): 887 -891 .
[6] LIANG Xin,MENG Liyan,CHEN Xiaoshan,SHI Jiaming,MENG Mianwu,HUANG Ying. Study on activated carbon made from sewage sludge[J]. , 2011, 30(5): 1124 .
[7] XING Junheng,XIA Zhengbin,ZHANG Yanhong,ZHONG Li. Effect of anodic oxidation parameters on crystallization behavior of TiO2 films[J]. Chemical Industry and Engineering Progree, 2013, 32(03): 592 -598 .
[8] SHI Binlong,ZHANG Mouzhen,CHENG Chan,LIU Qirui. Combinational demulsifiers of TA162824[J]. Chemical Industry and Engineering Progree, 2013, 32(03): 678 -680 .
[9] WU Meirong, ZHANG Rui, ZHOU Jun, XIE Xinxin, YONG Xiaoyu, YAN Zhiying, GE Mingmin, ZHENG Tao. Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria[J]. CIESC Journal, 2014, 65(5): 1602 -1606 .
[10] HAN Yueyun, CAO Qiling, HUA Quanxian, LU Leiming, TANG Jianwei, LIU Yong. Synthesis and properties of organic/inorganic superabsorbent resin[J]. CIESC Journal, 2015, 66(9): 3795 -3800 .