CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4652-4662.doi: 10.11949/0438-1157.20200653

• Catalysis, kinetics and reactors • Previous Articles     Next Articles

Effects of identities of supports on Fe-based catalyst and their consequences on activities of CO2 hydrogenation to olefins

Yangyang LIU1(),Chao SUN2,Malhi Haripal Singh1,Chongyang WEI1,Zhenzhou ZHANG2(),Weifeng TU1,2()   

  1. 1.Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
    2.School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2020-05-25 Revised:2020-08-14 Online:2020-10-05 Published:2020-08-26
  • Contact: Zhenzhou ZHANG,Weifeng TU E-mail:yangyangliu_zzu51@163.com;zhangzhenzhou@zzu.edu.cn;weifengtu@zzu.edu.cn

Abstract:

The direct synthesis of olefins by CO2 hydrogenation with iron-based catalysts is one of the best ways to achieve CO2 emission reduction and CO2 conversion and utilization. At present, the CO2 hydrogenation activity and structural strength of the iron-based catalysts are still relatively low during CO2 hydrogenation process, which has become an important challenge for the industrialization of CO2 hydrogenation to olefins. In this work, a series of the supported iron-based catalyst was prepared by the impregnation method to study the influence of the properties of support materials on the structure of iron-based catalysts and the reactivities of the direct synthesis of olefins from CO2 hydrogenation. This work found that the support induced the iron species formed during the process of CO2 hydrogenation, simultaneously affected the order degree of carbon species on the surface of iron-based catalyst, and tuned the capability of CO2 adsorption and the activities of CO2 activation. The results shown that the Fe-based catalyst supported on ZrO2 exhibited the best catalytic performance for CO2 hydrogenation to olefins at 320℃ and 2.0 MPa. The CO2 conversion (>30%) and the selectivity of olefins in C2—C7 hydrocarbon products were as high as over 85%, the ratio of olefins to paraffins was 8.2, and the CO selectivity was 17.1%.

Key words: carbon dioxide, hydrogenation, catalyst, support, olefins, iron species, alkali metal, Na, surface carbon species

CLC Number: 

  • O 643.3

Fig.1

Catalytic performance of the Fe based catalysts supported on different supports for CO2 hydrogenation [reaction conditions:320℃, 2.0 MPa, CO2/H2/Ar =1/3/3 and GHSV=9000 ml/(g·h)]"

Table 1

Performance of supported Fe catalysts for CO2 hydrogenation"

催化剂

CO2转化率

/%

含碳产物的选择性/C%

C2~C7烷烃和烯烃的

选择性/C%

C2~C7烃类

O/P比

C2~C7= 时空产率/(g/(kg·h))
COCH4C2~C7C2~C7oC2~C7=
FeNa/SiO218.968.327.94.850.449.61.03.0
FeNa/Al2O338.410.034.455.650.149.91.067.8
FeNa/ZrO232.617.120.262.710.889.28.2111.4

Table 2

Physicochemical properties of supports and supported Fe catalysts"

催化剂

BET /

(m2/g)

总孔容v/

(cm3/g)

平均孔径d /nmFe2O3尺寸/nm
SiO2311.661.0910.96
Al2O3150.440.5711.98
ZrO24.390.0425.87
FeNa/SiO2167.430.519.3016.7
FeNa/Al2O3140.310.388.3015.9
FeNa/ZrO214.200.0818.8219.0

Fig.2

CO-TPR profiles of Fe-based catalyst precursor on different supports"

Fig.3

XRD patterns of Fe-based catalyst on different supports [reaction conditions:320℃, 2 MPa, CO2/H2/Ar =1/3/3 and GHSV=9000 ml/(g·h)]"

Fig.4

Raman spectra of Fe-based catalyst on different supports [reaction conditions:320℃, 2 MPa, CO2/H2/Ar =1/3/3 and GHSV=9000 ml/(g·h)]"

Fig.5

FTIR spectra of H2 pretreated supports and catalysts after CO2 adsorption and stabilization in Ar flow at 50℃"

Fig.6

Schematic diagram of the effect of supports on the evolution of iron species and consequent tuning the hydrogenation of CO2 to olefins"

1 白雪楠, 白昕, 尤慧君. 中国碳交易市场发展现状及问题分析[J]. 中外企业家, 2020, 14: 100.
Bai X N, Bai X, You H J. Development status and problems of carbon trading market in China [J]. Chinese and Foreign Entrepreneurs, 2020, 14: 100.
2 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285.
Gong J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4): 1282-1285.
3 靳治良, 钱玲, 吕功煊. 二氧化碳化学—现状及展望[J]. 化学进展, 2010, 22(6): 1102-1115.
Jin Z L, Qian L, Lyu G X. CO2 Chemistry—actuality and expectation[J]. Progress in Chemistry, 2010, 22(6): 1102-1115.
4 Wang S, Xi C. Recent advances in nucleophile-triggered CO2-incorporated cyclization leading to heterocycles[J]. Chem. Soc. Rev., 2019, 48(1): 382-404.
5 成康, 张庆红, 康金灿, 等. 二氧化碳直接制备高值化学品中的接力催化方法[J]. 中国科学: 化学, 2020, 50(7): 743-755.
Cheng K, Zhang Q H, Kang J C, et al. Relay catalysis in the direct conversion of carbon dioxide to high-value chemicals[J]. Sci. Sin. Chim., 2020, 50(7): 743-755.
6 陈倩倩, 顾宇, 唐志永, 等. 以二氧化碳规模化利用技术为核心的碳减排方案[J]. 中国科学院院刊, 2019, 34(4): 478-487.
Chen Q Q, Gu Y, Tang Z Y, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(4): 478-487.
7 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1): 3-8.
Jin Y, Zhou Y C, Hu S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1): 3-8.
8 Yang H Y, Zhang C, Gao P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598.
9 高新华, 王康洲, 张建利, 等. CO/CO2催化加氢双功能催化剂新进展[J]. 石油学报(石油加工), 2019, 35(6): 1228-1238.
Gao X H, Wang K Z, Zhang J L, et al. Recent advances in bifunctional catalysts for hydrogenation of CO/CO2[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2019, 35(6): 1228-1238.
10 高鹏, 崔勖, 钟良枢, 等. CO/CO2加氢高选择性合成化学品和液体燃料[J]. 化工进展, 2019, 38(1): 183-195.
Gao P, Cui X, Zhang L S, et al. CO/CO2 hydrogenation to chemicals and liquid fuels with high selectivity[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 183-195.
11 Jiao F, Li J J, Pan X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351: 1065-1068.
12 Wei C Y, Tu W F, Jia L Y, et al. The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins[J]. Applied Surface Science, 2020, DOI: 10.1016/j.apsusc.2020.146622.
doi: 10.1016/j.apsusc.2020.146622
13 张玉龙, 邵光印, 张征湃, 等. 活化气氛对CO2加氢制取低碳烯烃Fe-K催化剂构-效关系[J]. 化工学报, 2018, 69(2): 690-698.
Zhang Y L, Shao G Y, Zhang Z P, et al. Activation atmospheres on structure-performance relationship of K-promoted Fe catalysts for lower olefin synthesis from CO2 hydrogenation[J]. CIESC Journal, 2018, 69(2): 690-698.
14 Liang B L, Sun T, Ma J G, et al. Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins[J]. Catal. Sci. Technol., 2019, 9 (2): 456-464.
15 Zhang Z Z, Wei C Y, Jia L Y, et al. Insights into the regulation of FeNa catalysts modified by Mn promoter and their tuning effect on the hydrogenation of CO2 to light olefins[J]. Journal of Catalysis, 2020, 390: 12-22.
16 Liu J H, Zhang A F, Jiang X, et al. Overcoating the surface of Fe-based catalyst with ZnO and nitrogen-doped carbon toward high selectivity of light olefins in CO2 hydrogenation[J]. Ind. Eng. Chem. Res, 2019, 58 (10): 4017-4023.
17 Cheng K, Virginie M, Ordomsky V V, et al. Pore size effects in high-temperature Fischer–Tropsch synthesis over supported iron catalysts[J]. Journal of Catalysis, 2015, 328: 139-150.
18 Numpilai T, Chanlek N, Poo-Arporn Y, et al. Pore size effects on physicochemical properties of Fe-Co/K-Al2O3 catalysts and their catalytic activity in CO2 hydrogenation to light olefins[J]. Applied Surface Science, 2019, 483: 581-592.
19 张俊, 张征湃, 苏俊杰, 等. 载体碱性对Fe基催化剂费-托合成反应的影响[J]. 化工学报, 2016, 67(2): 549-556.
Zhang J, Zhang Z P, Su J J, et al. Effect of support basicity on iron based catalysts for Fischer-Tropsch synthesis[J]. CIESC Journal, 2016, 67(2): 549-556.
20 Wang J J, You Z Y, Zhang Q H, et al. Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts[J]. Catalysis Today, 2013, 215: 186-193.
21 Gu H, Ding J, Zhong Q, et al. Promotion of surface oxygen vacancies on the light olefins synthesis from catalytic CO2 hydrogenation over Fe–K/ZrO2 catalysts[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11808-11816.
22 Lu J Z, Yang L J, Xu B L, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer–Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2): 613-621.
23 Su X J, Zhang J L, Fan S B, et al. Effect of preparation of Fe-Zr-K catalyst on the product distribution of CO2 hydrogenation[J]. RSC Advances, 2015, 5(98): 80196-80202.
24 Torres Galvis H M, Bitter J H, Khare C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335: 835-838.
25 Park J Y, Lee Y J, Khanna P K, et al. Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts: effect of particle size of iron oxide[J]. Journal of Molecular Catalysis A: Chemical, 2010, 323(1/2): 84-90.
26 Lee Y H, Lee D W, Kim H, et al. Fe–Zn catalysts for the production of high-calorie synthetic natural gas[J]. Fuel, 2015, 159: 259-268.
27 Jin Y, Datye A K. Phase transformations in iron Fischer–Tropsch catalysts during temperature-programmed reduction[J]. Journal of Catalysis, 2000, 196(1): 8-17.
28 Li S Z, Li A W, Krishnamoorthy S, et al. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts[J]. Catalysis Letters, 2001, 77(4): 197-205.
29 Zhang C H, Wan H J, Yang Y, et al. Study on the iron–silica interaction of a co-precipitated Fe/SiO2 Fischer–Tropsch synthesis catalyst[J]. Catalysis Communications, 2006, 7(9): 733-738.
30 Yuen S, Kubsh J E, Dumesic J A, et al. Metal oxide-support interactions in silica-supported iron oxide catalysts probed by nitric oxide adsorption[J]. The Journal of Physical Chemistry, 1982, 86(15): 3022-3032.
31 Xie T Z, Wang J Y, Ding F S, et al. CO2 hydrogenation to hydrocarbons over alumina-supported iron catalyst: effect of support pore size[J]. Journal of CO2 Utilization, 2017, 19: 202-208.
32 Wu J H, Wang L C, Yang X, et al. Support effect of the Fe/BN catalyst on Fischer–Tropsch performances: role of the surface B-O defect[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2805-2810.
33 Zhang Y L, Cao C X, Zhang C, et al. The study of structure-performance relationship of iron catalyst during a full life cycle for CO2 hydrogenation[J]. Journal of Catalysis, 2019, 378: 51-62.
34 Pham T H, Qi Y Y, Yang J, et al. Insights into Hägg iron-carbide-catalyzed Fischer–Tropsch synthesis: suppression of CH4 formation and enhancement of C–C coupling on χ-Fe5C2 (510)[J]. ACS Catalysis, 2015, 5(4): 2203-2208.
35 Moodley D J, van de loosdrecht J, Saib A M, et al. Carbon deposition as a deactivation mechanism of cobalt-based Fischer–Tropsch synthesis catalysts under realistic conditions[J]. Applied Catalysis A: General, 2009, 354(1/2): 102-110.
36 Zhang Y L, Fu D D, Liu X L, et al. Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem, 2018, 10(6): 1272-1276.
37 Zhang Z P, Zhang J, Wang X, et al. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins[J]. Journal of Catalysis, 2018, 365: 71-85.
38 Thomsen C, Reich S. Double resonant Raman scattering in graphite[J]. Physical Review Letters, 2000, 85(24): 5214-5217.
39 Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics, 1970, 53(3): 1126-1130.
40 Gruver V, Young R, Engman J, et al. The role of accumulated carbon in deactivating cobalt catalysts during FT synthesis in a slurry-bubble-column reactor[J]. American Chemical Society, Division of Petroleum Chemistry, Preprints, 2005, 50: 164-166.
41 Solis-Garcia A, Louvier-Hernandez J F, Almendarez-Camarillo A, et al. Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni[J]. Applied Catalysis B: Environmental, 2017, 218: 611-620.
42 Takano H, Kirihata Y, Izumiya K, et al. Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation[J]. Applied Surface Science, 2016, 388: 653-663.
43 Szamyi J, Kwak J H. Dissecting the steps of CO2 reduction(1). The interaction of CO and CO2 with γ-Al2O3: an in situ FTIR study[J]. Phys Chem Chem Phys, 2014, 16(29): 15117-15125.
44 Proano L, Tello E, Arellano-Trevino M A, et al. In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over Ru, "Na2O"/Al2O3 dual functional material[J]. Applied Surface Science, 2019, 479: 25-30.
45 Szanyi J, Kwak J H. Dissecting the steps of CO2 reduction(2). The interaction of CO and CO2 with Pd/γ-Al2O3: an in situ FTIR study[J]. Phys. Chem. Chem. Phys., 2014, 16(29): 15126-15138.
46 Guo J Z, Hou Z Y, Gao J, et al. DRIFTS study on adsorption and activation of CH4 and CO2 over Ni/SiO2 catalyst with various Ni particle sizes[J]. Chinese Journal of Catalysis, 2007, 28(1): 22-26.
47 Chang K, Ordomsky V V, Legras B, et al. Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2015, 502: 204-214.
[1] Junyuan WU, Weizhi HUO, Zhiqiang LI, Jiaheng ZENG, Yanbin JIANG. Preparation of coaxial electrospun zein nanofiber film embedding sodium lignosulfonate for enhanced adsorption of heavy metal ions [J]. CIESC Journal, 2020, 71(S1): 252-260.
[2] Bing ZHANG, Liping WEI, Haipeng TENG. Recurrence analysis of pressure fluctuations inclapboard-type internally circulating fluidized bed [J]. CIESC Journal, 2020, 71(S1): 106-113.
[3] Houju PEI, Yanlong JIANG, Hong SHI, Yonglong CUI, Changdong CHEN, Xiaohui QIAN. Forced convective heat transfer around spherical aerostat based on M-L transition model [J]. CIESC Journal, 2020, 71(S1): 136-141.
[4] Lei WANG, Fuyun ZHAO, Yang CAI, Weiwei WANG, Yunhe WANG, Guobiao YANG. Combined convective heat and pollutant removals in enclosures with different vented slots [J]. CIESC Journal, 2020, 71(S1): 142-148.
[5] Jiaxin LIU, Yu XU, Er HUA. Structure and hydrogen bonding study on acylamino acid protic ionic liquids composed of 2-N-ethylhexylethylenediaminim cation with acylalanineate anions [J]. CIESC Journal, 2020, 71(S1): 15-22.
[6] Kun LUO, Xiaodong MAO, Liping PANG. Cockpit thermal control performance of new helicopter heat pump air conditioning system [J]. CIESC Journal, 2020, 71(S1): 187-193.
[7] Yalin LIU, Ke WANG, Lei ZHAO. Numerical analysis on aerodynamically generated sound dipole source characteristics of shunt T-elbow [J]. CIESC Journal, 2020, 71(S1): 194-203.
[8] Dongmin TIAN, Yanpeng WU, Fengjun CHEN. Analysis of heat transfer performance of copper-water heat pipe based on nano enhanced-PCM [J]. CIESC Journal, 2020, 71(S1): 220-226.
[9] Yibin LI, Yajuan SONG, Xiaohui DAI, Zhenggui LI. Effects of different propeller blades on gas-liquid two-phase mixing characteristics in stirred reactor [J]. CIESC Journal, 2020, 71(S1): 227-235.
[10] Chen WANG, Xiaohui SHE, Xiaosong ZHANG. Thermodynamic study of liquid air energy storage with air purification unit [J]. CIESC Journal, 2020, 71(S1): 23-30.
[11] Huizhong ZHAO, Min LEI, Tianhou HUANG, Tao LIU, Min ZHANG. Water vapor adsorption performance of composite adsorbent MWCNT/MgCl2 [J]. CIESC Journal, 2020, 71(S1): 272-281.
[12] Xiaoyu GUO, Zhe TIAN, Jide NIU, Jie ZHU. Study on energy storage of regional pipe network system based on time-of-use pricing [J]. CIESC Journal, 2020, 71(S1): 293-299.
[13] Bin QI, Xixi DUAN, Rong A, Hongsheng JIANG. Analysis of environmental control and thermal control for manned spacecraft [J]. CIESC Journal, 2020, 71(S1): 300-306.
[14] Rong A, Liping PANG, Dongsheng YANG, Bin QI. Design and optimization of integrated thermal management system for high-speed aircraft [J]. CIESC Journal, 2020, 71(S1): 315-321.
[15] Fanxin MENG, Jianing SUN, Yue ZHOU, Zanjun GAO, Dingbin CHENG. Modeling and validating of air cycle machine in aircraft environmental control system [J]. CIESC Journal, 2020, 71(S1): 328-334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Yan, LIANG Xiuxia, YANG Peng, CHEN Zengqiang, YUAN Zhuzhi. Modeling and Control of Nonlinear Discrete-time Systems Based on Compound Neural Networks[J]. , 2009, 17(3): 454 -459 .
[2] LIU Changjun, LIANG Bin, TANG Shengwei, ZHANG Haiguang, MIN Enze. A Theoretical Model for the Size Prediction of Single Bubbles Formed under Liquid Cross-flow[J]. , 2010, 18(5): 770 -776 .
[3] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[4] GAO FuyanLIU JianzhongWANG ChuanchengYU YujieCHENG JunZHANG YanweiZHOU JunhuCEN Kefa. Slurryability of petroleum coke and rheological characteristics and stability of PCWS[J]. , 2010, 61(11): 2912 -2918 .
[5] CHENG Wenlong; HAN Fengyun;LIU Qinie;FAN Hanlin. Effect of system pressure on spray cooling heat transfer and surface temperature uniformity[J]. , 2010, 61(12): 3086 -3091 .
[6]

JIAO Bo;QIU Limin;LU Junliang

.

New correlation for entrainment fraction at onset of annular flow

[J]. , 2008, 59(11): 2750 -2755 .
[7] FU Dafang, LIN Yujiao. Analysis of sludge layer on different filter materials in dynamic membrane bioreactor[J]. CIESC Journal, 2008, 59(10): 2596 -2600 .
[8] YANG Hailiang, PENG Zhiqin, ZHOU Yang, WANG Ziqiang, ZHAO Feng,CAO Xiaoye, ZHANG Jing, HU Zhiwen. Preparation and humidity-controlling characterization of composite CMC-g-PAM/PAAS porous resin by twice foaming method[J]. , 2010, 61(12): 3302 -3308 .
[9] Tan Li-ye, Duan Shi-qing, Gong Mao-chu, Dang Xiu-wen and Wei Cheng-yu Chemistry Department of Sichuan University. Recycle Gradientless Catalytic Reactor for Reaction at High Temperature and Moderate Pressure[J]. , 1980, 31(3): 293 -298 .
[10] MA Xiaokui, DING Guoliang, ZHANG Yuanming. Airside heat and mass transfer characteristics of split fin-and-tube heat exchangers under dehumidifying conditions[J]. CIESC Journal, 2007, 58(8): 1911 -1916 .