CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4395-4408.doi: 10.11949/0438-1157.20200633

• Reviews and monographs • Previous Articles     Next Articles

Research status and development trend of artificial antibacterial fibers

Le ZHOU1,2,3(),Binqi WANG3,Yi NIE1,2,3,4()   

  1. 1.Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, China
    2.School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    3.Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, Henan, China
    4.Langfang Institute of Process Engineering, Chinese Academy of Sciences, Langfang 065001, Hebei, China
  • Received:2020-05-25 Revised:2020-08-27 Online:2020-10-05 Published:2020-08-10
  • Contact: Yi NIE;


With the improvement of people??s awareness of environmental protection and health, the demand for antibacterial technology in the fiber textile market is increasing. Artificial antibacterial fibers are composite fibers with antibacterial function prepared by adding antibacterial agents into common fiber, which is simple and convenient to industrial production and application. Antibacterial agent is the key component in the preparation of artificial antibacterial fibers, which determines the preparation method and antibacterial effect of antibacterial fibers. The research status of inorganic antibacterial agents, organic antibacterial agents, natural antibacterial agents and new material antibacterial agents used in the preparation of artificial antibacterial fibers were mainly discussed and reviewed, and the research focus and development trend of artificial antibacterial fibers in the future were prospected.

Key words: artificial antibacterial fiber, composite materials, fabrication, antibacterial agent, functional fiber

CLC Number: 

  • O 636.1+1
12 Hari Prakash N, Sarma A, Sarma B. Antibacterial studies of copper deposited water hyacinth fiber using RF plasma sputtering process[J]. Materials Technology, 2018, 33(9): 621-633.
13 Jiao Y, Wan C, Zhang W, et al. Carbon fibers encapsulated with nano-copper: a coreshell structured composite for antibacterial and electromagnetic interference shielding applications[J]. Nanomaterials (Basel), 2019, 9: 460.
14 Shariatinia Z, Shekarriz S, Mirhosseini Mousavi H S, et al. Disperse dyeing and antibacterial properties of nylon and wool fibers using two novel nanosized copper(Ⅱ) complexes bearing phosphoramide ligands[J]. Arabian Journal of Chemistry, 2017, 10(7): 944-955.
15 Wang Y, Wang W, Liu B, et al. Preparation of durable antibacterial and electrically conductive polyacrylonitrile fibers by copper sulfide coating[J]. Journal of Applied Polymer Science, 2017, 134(44): 45496.
16 李会改, 万明, 王梅珍, 等. 银系抗菌纤维的研究现状[J]. 合成纤维, 2014, 43(7): 29-32.
Li H G, Wan M, Wang M Z, et al. Research status of silver antibacterial fibers[J]. Synthetic Fiber, 2014, 43(7): 29-32.
17 Benli B, Yalın C. The influence of silver and copper ions on the antibacterial activity and local electrical properties of single sepiolite fiber: a conductive atomic force microscopy (C-AFM) study[J]. Applied Clay Science, 2017, 146: 449-456.
18 Chen G, Yan L, Wan X, et al. In Situ synthesis of silver nanoparticles on cellulose fibers using D-glucuronic acid and its antibacterial application[J]. Materials (Basel), 2019, 12: 3101.
19 Kwak H W, Kim J E, Lee K H. Green fabrication of antibacterial gelatin fiber for biomedical application[J]. Reactive and Functional Polymers, 2019, 136: 86-94.
20 Smiechowicz E, Niekraszewicz B, Kulpinski P, et al. Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica[J]. Cellulose, 2018, 25(6): 3499-3517.
21 Zhang Y, Chen H, Sun H, et al. Silver-doped carbon fibers at low loading capacity that display high antibacterial properties[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(5): 1628-1637.
22 Xu S, Zhang F, Yao L, et al. Eco-friendly fabrication of antibacterial cotton fibers by the cooperative self-assembly of hyperbranched poly(amidoamine)- and hyperbranched poly(amine-ester)-functionalized silver nanoparticles[J]. Cellulose, 2017, 24(3): 1493-1509.
1 李彦, 施浩浩, 谭玉静, 等. 抗菌纤维及其应用[J]. 中国纤检, 2012, (11): 80-83.
Li Y, Shi H H, Tan Y J, et al. Antibacterial fiber and its application[J]. China Fiber Inspection, 2012, (11): 80-83.
2 王建刚, 严涛海. 纺织品抗菌整理研究的现状与发展[J]. 山东纺织科技, 2012, 53(3): 42-45.
Wang J G, Yan T H. The present situation and development of textile antibacterial finishing research[J]. Shandong Textile Technology, 2012, 53(3): 42-45.
3 张毅, 高园园. 人工抗菌纤维研究及应用[J]. 天津纺织科技, 2017, (6): 22-25.
Zhang Y, Gao Y Y. Study and application of artificial antibacterial fibers[J]. Tianjin Textile Technology, 2017, (6): 22-25.
4 Zhu X, Hou X, Ma B, et al. Chitosan/gallnut tannins composite fiber with improved tensile, antibacterial and fluorescence properties[J]. Carbohydr. Polym., 2019, 226: 115311.
5 Cassano R, Trombino S, Ferrarelli T, et al. Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties[J]. Cellulose, 2013, 20(1): 547-557.
6 Tayyar A E, D.TetİK G, Abak E. Evaluation of antibacterial, mechanical, and comfort properties of woven fabrics consist of cotton, bamboo, and silver fibers[J]. Tekstİl Ve Konfeksİyon, 2018, 28(4).
7 Gao D, Li Y, Lyu B, et al. Silicone quaternary ammonium salt based nanocomposite: a long-acting antibacterial cotton fabric finishing agent with good softness and air permeability[J]. Cellulose, 2019, 27(2): 1055-1069.
8 Osama Bshena T D H, Leon M T D, Bert K. Antimicrobial fibers: therapeutic possibilities and recent advances[J]. Future Med. Chem., 2011, 3(14): 1821-1847.
23 Khude P, Majumdar A, Butola B S. Leveraging the antibacterial properties of knitted fabrics by admixture of polyester-silver nanocomposite fibres[J]. Fibers and Polymers, 2018, 19(7): 1403-1410.
24 Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders [J]. FEMS Microbiology Letters, 1985, 29(1/2): 211-214.
9 陈仕国, 郭玉娟, 陈少军, 等. 纺织品抗菌整理剂研究进展[J]. 材料导报, 2012, 26(7): 89-94.
Chen S G, Guo Y J, Chen S J, et al. Progress in antibacterial finishing agents for textiles[J]. Material Review, 2012, 26(7): 89-94.
25 Deng Y, Li Z, Tang R, et al. What will happen when microorganisms “meet” photocatalysts and photocatalysis?[J]. Environmental Science: Nano, 2020, 7(3): 702-723.
26 Wen J, Li Q, Li H, et al. Nano-TiO2 imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium(Ⅵ) recovery[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 1826-1833.
10 莫月香, 罗峻, 杨欣卉. 纺织品抗菌整理剂及其检测研究进展[J]. 广东化工, 2018, 45(11): 150-151.
Mo Y X, Luo J, Yang X H. Research progress of antibacterial finishing agents and their detection for textiles[J]. Guangdong Chemical, 2018, 45(11): 150-151.
27 Jingjit P, Srisawat N. Spinning of photocatalytic fiber as splittable segmented-pie bi-component fibers for antibacterial textiles[J]. J. Nanosci. Nanotechnol., 2019, 19(3): 1554-1561.
28 Jaksik J, Tran P, Galvez V, et al. Advanced cotton fibers exhibit efficient photocatalytic self-cleaning and antimicrobial activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365: 77-85.
29 Tan L Y, Sin L T, Bee S T, et al. A review of antimicrobial fabric containing nanostructures metal-based compound[J]. Journal of Vinyl and Additive Technology, 2019, 25(S1): E3-E27.
30 Malis D, Jersek B, Tomsic B, et al. Antibacterial activity and biodegradation of cellulose fiber blends with incorporated ZnO[J]. Materials (Basel), 2019, 12: 20.
11 张海涛, 张雪, 刘蒙蒙, 等. 天然抗菌纺织品的发展现状[J]. 纺织科技进展, 2020, (3): 8-11.
Zhang H T, Zhang X, Liu M M, et al. Development status of natural antibacterial textiles[J]. Advances in Textile Technology, 2020, (3): 8-11.
31 Popescu M C, Ungureanu C, Buse E, et al. Antibacterial efficiency of cellulose-based fibers covered with ZnO and Al2O3 by atomic layer deposition[J]. Applied Surface Science, 2019, 481: 1287-1298.
32 Gopinath A, Krishna K. Dual role of chemically functionalized activated carbon fibres: investigation of parameters influencing the degradation of organophosphorus compounds and antibacterial behaviour[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(2): 611-617.
33 Salgueiro A M, Santos M D, Saraiva J A, et al. Ultra-high pressure modified cellulosic fibres with antimicrobial properties[J]. Carbohydr. Polym., 2017, 175: 303-310.
34 Borda d' Água R, Branquinho R, Duarte M P, et al. Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost in situ synthesis[J]. New Journal of Chemistry, 2018, 42(2): 1052-1060.
35 Bhutiya P L, Misra N, Abdul Rasheed M, et al. Nested seaweed cellulose fiber deposited with cuprous oxide nanorods for antimicrobial activity[J]. Int. J. Biol. Macromol., 2018, 117: 435-444.
36 Zhou J, Fei X, Li C, et al. Integrating nano-Cu2O@ZrP into in situ polymerized polyethylene terephthalate (pet) fibers with enhanced mechanical properties and antibacterial activities[J]. Polymers (Basel), 2019, 11: 1.
37 Ibrahim M M, Mezni A, El-Sheshtawy H S, et al. Direct z-scheme of Cu2O/TiO2 enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight[J]. Applied Surface Science, 2019, 479: 953-962.
38 周静茹, 裴丽霞, 张立志. 改性活性炭负载高分子季铵盐的杀菌性能[J]. 化工学报, 2012, 63(1): 286-291.
Zhou J R, Pei L X, Zhang L Z. Bactericidal properties of polymer quaternary ammonium salt supported on modified activated carbon[J]. CIESC Journal, 2012, 63(1): 286-291.
39 Ates B, Cerkez I. Dual antibacterial functional regenerated cellulose fibers[J]. Journal of Applied Polymer Science, 2017, 134(21): 44872.
40 Lee S, Lee J. Antibacterial coating of glass fiber filters with silver nanoparticles (agnps) and glycidyltrimethylammonium chloride (GTAC)[J]. Fibers and Polymers, 2018, 19(10): 2080-2087.
41 Zhang B, Jiang Y. Durable antibacterial and hydrophobic polyester fibres and wearable textiles[J]. Micro & Nano Letters, 2018, 13(7): 1011-1016.
42 靳亚楠. 甜菜碱型氯胺抗菌剂的合成及其应用[D]. 大连: 大连理工大学, 2019.
Jin Y N. Synthesis and application of betaine chloramine antibacterial agent[D]. Dalian: Dalian University of Technology, 2019.
43 Chang L, Wang J, Tong C, et al. Comparison of antimicrobial activities of polyacrylonitrile fibers modified with quaternary phosphonium salts having different alkyl chain lengths[J]. Journal of Applied Polymer Science, 2016, 133(29): 43689.
44 孙雪飞, 高勇强, 赵颂, 等. 胍基聚合物接枝改性制备抗菌抗污染超滤膜[J]. 化工学报, 2018, 69(11): 4869-4878.
Ren X F, Gao Y Q, Zhao S, et al. Preparation of antibacterial ultrafiltration membrane by grafting modification of guanidine polymer[J]. CIESC Journal, 2018, 69(11): 4869-4878.
45 Cao C, Wu K, Yuan W, et al. Synthesis of non-water soluble polymeric guanidine derivatives and application in preparation of antimicrobial regenerated cellulose[J]. Fibers and Polymers, 2017, 18(6): 1040-1047.
46 Cai Q, Yang S, Zhang C, et al. Facile and versatile modification of cotton fibers for persistent antibacterial activity and enhanced hygroscopicity[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38506-38516.
47 韩瑞涛, 赵磊, 唐二军, 等. ATRP法接枝卤胺分子制备纤维素共聚物抗菌材料[J]. 化工学报, 2018, 69: 155-160.
Han R T, Zhao L, Tang E J, et al. The antibacterial materials of cellulose copolymers were prepared by grafting halide amine with ATRP method[J]. CIESC Journal, 2018, 69: 155-160.
48 Jie Z, Zhang B, Zhao L, et al. Regenerable antimicrobial silica gel with quaternarized N-halamine[J]. Journal of Materials Science, 2014, 49(9): 3391-3399.
49 Chen S G, Chen S J, Jiang S, et al. Study of zwitterionic sulfopropylbetaine containing reactive siloxanes for application in antibacterial materials[J]. Colloids and Surfaces B-Biointerfaces, 2011, 85(2): 323-329.
50 Chen S G, Yuan L J, Li Q Q, et al. Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating[J]. Small, 2016, 12(26): 3516-3521.
51 Chen S G, Chen S J, Jiang S, et al. Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine[J]. ACS Applied Materials & Interfaces, 2011, 3(4): 1154-1162.
52 Zhang S B, Yang X H, Tang B, et al. New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine[J]. Chemical Engineering Journal, 2018, 336: 123-132.
53 Zeng M, Xu J, Luo Q, et al. Constructing antibacterial polymer nanocapsules based on pyridine quaternary ammonium salt[J]. Mater. Sci. Eng. C Mater. Biol. Appl., 2020, 108: 110383.
54 Li L, Jia D, Wang H, et al. Synthesis of sulfonium N-chloramines for antibacterial applications[J]. New Journal of Chemistry, 2020, 44(2): 303-307.
55 Zhou Y, Tang R C. Natural flavonoid-functionalized silk fiber presenting antibacterial, antioxidant, and UV protection performance[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10518-10526.
56 Li Y D, Guan J P, Tang R C, et al. Application of natural flavonoids to impart antioxidant and antibacterial activities to polyamide fiber for health care applications[J]. Antioxidants (Basel), 2019, 8: 38.
57 Shahmoradi Ghaheh F, Mortazavi S M, Alihosseini F, et al. Assessment of antibacterial activity of wool fabrics dyed with natural dyes[J]. Journal of Cleaner Production, 2014, 72: 139-145.
58 Jamili F, Mirjalili M, Zamani H A. Antibacterial wood-plastic composite produced from treated and natural dyed wood fibers[J]. Polymers and Polymer Composites, 2019, 27(6): 347-355.
59 Khaldi Z, Ouk T S, Zerrouki R. Synthesis and antibacterial properties of thymol and carvacrol grafted onto lignocellulosic kraft fibers[J]. Journal of Bioactive and Compatible Polymers, 2018, 33(5): 558-570.
60 Huang T, Chen C, Li D, et al. Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose[J]. Cellulose, 2019, 26(1): 665-677.
61 Liu Y R, Thomsen K, Nie Y, et al. Predictive screening of ionic liquids for dissolving cellulose and experimental verification[J]. Green Chemistry, 2016, 18(23): 6246-6254.
62 Zhang Z, Nie Y, Zhang Q, et al. Quantitative change in disulfide bonds and microstructure variation of regenerated wool keratin from various ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2614-2622.
63 Liu X, Nie Y, Liu Y, et al. Screening of ionic liquids for keratin dissolution by means of COSMO-RS and experimental verification[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17314-17322.
64 Liu Y, Wang Y, Nie Y, et al. Preparation of MWCNTs-graphene-cellulose fiber with ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 20013-20021.
65 Zhou L, Pan F, Liu Y, et al. Study on the regularity of cellulose degradation in ionic liquids[J]. Journal of Molecular Liquids, 2020, 308: 113153.
66 张锁江, 刘艳荣, 聂毅. 离子液体溶解天然高分子材料及绿色纺丝技术研究综述[J]. 轻工学报, 2016, 31(2): 1-14.
Zhang S J, Liu Y R, Nie Y. Research review of dissolving natural polymer materials with ionic liquids and green spinning technology[J]. Journal of Light Industry, 2016, 31(2): 1-14.
67 聂毅, 王均凤, 张振磊, 等. 离子液体回收循环利用的研究进展与趋势[J]. 化工进展, 2019, 38(1): 100-110.
Nie Y, Wang J F, Zhang Z L, et al. Trends and research progresses on the recycling of ionic liquids[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 100-110.
68 王均凤, 聂毅, 王斌琦, 等. 离子液体法再生纤维素纤维制造技术及发展趋势[J]. 化工学报, 2019, 70(10): 3836-3846.
Wang J F, Nie Y, Wang B Q, et al. Manufacturing technology and development direction on regenerated cellulose fibers using ionic liquids[J]. CIESC Journal, 2019, 70(10): 3836-3846.
69 聂毅, 周乐, 康召青, 等. 一种原液着色制备姜黄抗菌再生纤维的方法:201910877532.6[P]. 2019-09-17.
Nie Y, Zhou L, Kang Z Q, et al. A method for preparing turmeric antibacterial regenerated fiber by coloring the original solution: 201910877532.6[P]. 2019-09-17.
70 Qiao Z, Fu Y, Lei C, et al. Advances in antimicrobial peptides-based biosensing methods for detection of foodborne pathogens: a review[J]. Food Control, 2020, 112: 107116.
71 Liu M, Jia L, Zhao Z, et al. Fast and robust lead (Ⅱ) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI)[J]. Chemical Engineering Journal, 2020, 390: 124667.
72 Li J, Wang X, Liu X, et al. Manufacture and performance of O-carboxymethyl chitosan sodium salt/cellulose fibers in N-methylmorpholine-N-oxide system[J]. Fibers and Polymers, 2014, 15(8): 1575-1582.
73 Ma B, Zhang M, He C, et al. New binary ionic liquid system for the preparation of chitosan/cellulose composite fibers[J]. Carbohydrate Polymers, 2012, 88(1): 347-351.
74 Rahman B M A, Hossain M A, Zakaria M, et al. Chitosan coated cotton fiber: physical and antimicrobial properties for apparel use[J]. Journal of Polymers and the Environment, 2016, 25(2): 334-342.
75 Hu X, Ren N, Chao Y, et al. Highly aligned graphene oxide/poly(vinyl alcohol) nanocomposite fibers with high-strength, antiultraviolet and antibacterial properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 297-304.
76 Ma Y, Bai D, Hu X, et al. Robust and antibacterial polymer/mechanically exfoliated graphene nanocomposite fibers for biomedical applications[J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 3002-3010.
77 Zhang Y, Lu Y, Yan X, et al. Functional & enhanced graphene/polyamide 6 composite fiber constructed by a facile and universal method[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 149-157.
78 Ma S, Zhang M, Nie J, et al. Multifunctional cellulose-based air filters with high loadings of metal-organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications[J]. Cellulose, 2018, 25(10): 5999-6010.
79 Yu Y, Chen G, Guo J, et al. Vitamin metal-organic framework-laden microfibers from microfluidics for wound healing[J]. Materials Horizons, 2018, 5(6): 1137-1142.
[1] Yongjin CUI, Yankai LI, Kai WANG, Jian DENG, Guangsheng LUO. Recent advances of numbering-up technology of micro-dispersion devices [J]. CIESC Journal, 2020, 71(10): 4350-4364.
[2] Yingying LI, Qianqian DENG, Hao LIU, Qichun LIU, Zhenggui GU, Fang WANG. Microstructure characterization and thermal stability of new silk fibroin composite films [J]. CIESC Journal, 2020, 71(1): 388-396.
[3] Jing XIANG, Hong WANG, Xun ZHU, Yudong DING, Qiang LIAO, Rong CHEN. Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties [J]. CIESC Journal, 2019, 70(9): 3545-3552.
[4] Yanzhao ZHAI, Anjiang CAI, Dongpeng ZHANG, Chao HAN, Li LI. Fabrication process of MEMS print head based on silicon-silicon low temperature direct bonding [J]. CIESC Journal, 2019, 70(3): 1220-1226.
[5] SANG Lixia, LI Feng. Study on preparation and thermal properties of carbonates composite heat storage materials [J]. CIESC Journal, 2018, 69(S1): 129-135.
[6] LIANG Miao, YU Tao, GAO Xiang, SU Rongxin, QI Wei, HE Zhimin. Fabrication of metal nanocomposites based on proteins and their self-assemblies as templates [J]. CIESC Journal, 2018, 69(11): 4553-4565.
[7] ZHANG Ning, SHAN Guorong. Near-infrared light and temperature responsive nanocomposite hydrogel [J]. CIESC Journal, 2018, 69(11): 4862-4868.
[8] CAO Xiaochang, WANG Zhi, QIAO Zhihua, WANG Jixiao, XU Zhenliang. One-step fabrication of asymmetric membranes containing amino compound for CO2 separation [J]. CIESC Journal, 2018, 69(11): 4778-4787.
[9] QIN Fangli, YUAN Yao, AI Guanya, WANG Aijun, ZHANG Hongyu. Three-dimensional ordered macro/mesoporous TiO2 inverse opal electrode with enhanced dye-sensitized solar cells' efficiency [J]. CIESC Journal, 2017, 68(7): 2925-2930.
[10] ZHOU Guofa, YANG Peimin, LUO Zhi, JIANG Xiannian. Numerical simulation on in-mold micro assembly molding process based on viscoelastic thermal fluid structure coupling [J]. CIESC Journal, 2017, 68(3): 1129-1137.
[11] HUANG Yan, ZHANG Xuelai. Heat transfer property of lauryl alcohol-capric acid-nanoparticle composite phase change materials [J]. CIESC Journal, 2016, 67(6): 2271-2276.
[12] ZHAO Chunxia, XUE Juanqin, ZHANG Yujie, LI Guoping, LUO Yao. Optimization of hot press molding conditions for making PPy/CS composite electrodes [J]. CIESC Journal, 2016, 67(10): 4514-4520.
[13] DU Pengya, BIAN Feng, YAO Mengmeng, CHANG Da, TANG Erjun. Synthesis of core-shell epoxy/polyacrylate composite particle with high damping property [J]. CIESC Journal, 2016, 67(10): 4508-4513.
[14] CHU Liangyin,WANG Wei,JU Xiaojie,XIE Rui. Progress of construction of micro-scale phase interfaces and preparation of novel functional materials with microfluidics [J]. Chemical Industry and Engineering Progree, 2014, 33(09): 2229-2234.
[15] QIANG Linping,CAO Weifu. Preparation of highly reenforcing hydrated silica antibacterial agent and its antibacterial performance [J]. Chemical Industry and Engineering Progree, 2014, 33(06): 1572-1575.
Full text



[1] HU Ruisheng, BAO Morigengaowa, XU Na, MA Lan. Preparation of novel catalyst Sr2FeMoO6 and its catalytic performance in methane combustion[J]. CIESC Journal, 2008, 59(6): 1418 -1424 .
[2] Wang Shaoting. Chen Shuzhang and Xu Ping (Tianjin University). Longitudinal Mixing in Packed Column Filled with Liquid[J]. , 1985, 36(4): 475 -484 .
[3] HAN Jin, ZHU Tong, IMAI Tsuyoshi, XIE Liyang, XU Chenghai, NOZAKI Tsutomu. Solubilization of excess sludge by high speed rotary disk[J]. CIESC Journal, 2008, 59(2): 478 -483 .

YANG Wenling;MA Peisheng;WANG Chunfang;LIU Yingxiang


Determination and correlation of equilibrium solubilitydata of oxygen(1)-acetic acid(2)-water(3)system

[J]. , 2005, 56(7): 1169 -1174 .

QIU Yongliang;CHEN Hongling;XU Nanping


Preparation of CdS/TiO2 by hydrothermal method and its photocatalytic activity

[J]. , 2005, 56(7): 1338 -1342 .
[6] LIU Haiyan, YU Jianning, BAO Xiaojun. Technology foresight in energy industries[J]. CIESC Journal, 2006, 57(8): 1817 -1826 .
[7] XIE Lanying;LUO Lingai;LI Zhong.

Measurement and simulation of adsorption isotherms of VOCs on MAC

[J]. , 2006, 57(6): 1357 -1363 .
[8] TANG Zhijie, TANG Zhaohui, ZHU Hongqiu. A multi-model fusion soft sensor modeling method[J]. CIESC Journal, 2011, 62(8): 2248 -2252 .
[10] Hu Yujun, Hei Encheng and Liu Guojie(Department of Chemistry, East China University of Science and Technology, Shanghai 200237). LIQUID-LIQUID EQUILIBRIA AND CONSOLUTE PHENOMENA[J]. , 1999, 50(4): 483 -490 .