CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4429-4444.doi: 10.11949/0438-1157.20200612

• Reviews and monographs • Previous Articles     Next Articles

Recent progress on cathode materials for potassium-ion batteries

Zhibo ZHANG(),Kunyao PENG,Maoning GENG,Xinyue ZHAO,Si LIU,Changbao ZHU()   

  1. College of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
  • Received:2020-05-19 Revised:2020-07-28 Online:2020-10-05 Published:2020-08-10
  • Contact: Changbao ZHU;


Due to resource and cost advantages, as well as the similarity of working principles with lithium-ion batteries, potassium-ion batteries (PIBs) have a bright future in large-scale energy storage applications. However, the ion size of potassium is larger than that of lithium and sodium ions, which not only affects the transport in the electrode, but also tends to cause irreversible damage to electrode structure, resulting poor electrochemical performance. For PIBs, the graphite that already applied in lithium-ion batteries can be used as anode, thus the cathode materials are the key to develop the high-performance potassium ion batteries. This review summarized the progress of various types of cathode materials for PIBs, and discussed their advantages, problems and corresponding modification methods. Finally, the main challenges and perspectives are also discussed to provide the future direction of cathode materials for PIBs.

Key words: potassium-ion batteries, cathode materials, nanomaterials, composites, electrochemistry

CLC Number: 

  • TM 911


The comparison of Li, Na and K in Earth’s crust abundance, standard reduction potential and ions radius"


The different oxygen atom stacking modes in layered oxide potassium ion cathode materials[19-22]"


In situ XRD characterization of P2-type K0.6CoO2 during charge/discharge process[(a)—(e)][19] and the SEM images of P2-type K0.6CoO2 that made by self-templated method(f)[24]"


SEM images[(a)—(c)], electrochemical performance[(d),(e)] of KVOP-B, KVOP-NS and KVOP-MS[50]"


Schematic crystal structures of ideal PBAs (a) and PBAs with crystal water (b)[61]"


STEM image(a), electrochemical performance[(b),(c)][68] and structural evolution (d) of MnHCF in process of K ions storage[65]"


The CV curves(a), ex situ FTIR spectroscopy under different charge and discharge states [corresponding to the states in (a)] (b) and the proposed redox mechanism (c) for PTCDI-DAQ in K-ion batteries[84]"

Table 1

The performance of typical four types of cathode electrode materials for PIBs"

材料类型典型材料电压 范围/V




(电流密度;圈数; 保持率)

层状过渡金属氧化物P2-K0.6CoO21.7~4.010 mA/g,82 mA·h/g;100 mA/g,65 mA·h/g40 mA/g;300;87%[24]
P2-K0.65Fe0.5Mn0.5O21.5~4.220 mA/g,151 mA·h/g;100 mA/g,103 mA·h/g100 mA/g;350;78%[28]
P′3-K0.8CrO21.5~3.811 mA/g,91 mA·h/g;436 mA/g,52 mA·h/g218 mA/g;300;99%[39]
聚阴离子型化合物KVOPO42.0~4.60.5 C,113.1 mA·h/g;20 C,83.4 mA·h/g5 C;500;75.6%[50]
KVPO4F2.0~5.00.5 C,101.8 mA·h/g;50 C,87.6 mA·h/g0.5 C;100;84.3%[51]
K4Fe3(PO4)2(P2O7)2.1~4.10.05 C,~118 mA·h/g;5 C,~83 mA·h/g5 C;500;82%[58]
普鲁士蓝及其类似物K1.70Mn[Fe(CN)6]0.90·1.10H2O2.5~4.60.2 C,142.4 mA·h/g;2 C,~93 mA·h/g1 C;100;77%[68]
K1.69Fe[Fe(CN)6 ]0.90·4H2O2~4.510 mA/g,140 mA·h/g;100 mA/g,120 mA·h/g100 mA/g;300;60%[69]
K1.81Ni[Fe(CN)6]0.97?0.086H2O2~4.510 mA/g,57 mA·h/g;500 mA/g,13.1 mA·h/g50 mA/g;1000;87.3%[71]
有机正极材料PTCDA1.5~3.510 mA/g,131 mA·h/g;500 mA/g,73 mA·h/g50 mA/g;200;66.1%[78]
AQDS1.4~3.00.1 C,95 mA·h/g;3 C,56 mA·h/g0.1 C;100;82.4%[82]
PTCDI-DAQ1~3.815 C,202 mA·h/g;100 C,133 mA·h/g15 C;900;72.7%[84]
1 Whittingham M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chemical Reviews, 2014, 114(23): 11414-11443.
2 Hy S, Liu H, Zhang M, et al. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries[J]. Energy & Environmental Science, 2016, 9(6): 1931-1954.
3 Hosaka T, Shimamura T, Kubota K, et al. Polyanionic compounds for potassium-ion batteries[J]. Chemical Record, 2019, 19(4): 735-745.
4 Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614.
5 Liu T, Zhang Y, Jiang Z, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy & Environmental Science, 2019, 12(5): 1512-1533.
6 Wang T, Su D, Shanmukaraj D, et al. Electrode materials for sodium-ion batteries: considerations on crystal structures and sodium storage mechanisms[J]. Electrochemical Energy Reviews, 2018, 1(2): 200-237.
7 Matsuura N, Umemoto K, Takeuchi Z I. Standard potentials of alkali metals, silver, and thallium metal/ion couples in N, N'-dimethylformamide, dimethyl sulfoxide, and propylene carbonate[J]. Bulletin of the Chemical Society of Japan, 1974, 47(4): 813-817.
8 Komaba S, Hasegawa T, Dahbi M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications, 2015, 60: 172-175.
9 Luo W, Wan J, Ozdemir B, et al. Potassium ion batteries with graphitic materials[J]. Nano Letters, 2015, 15(11): 7671-7677.
10 Ren X, Zhao Q, McCulloch W D, et al. MoS2 as a long-life host material for potassium ion intercalation[J]. Nano Research, 2017, 10(4): 1313-1321.
11 An Y, Liu Y, Tian Y, et al. Recent development and prospect of potassium-ion batteries with high energy and high safety for post-lithium batteries[J]. Functional Materials Letters, 2019, 12(4): 1930002.
12 Kubota K, Dahbi M, Hosaka T, et al. Towards K-ion and Na-ion batteries as “beyond Li-ion”[J]. The Chemical Record, 2018, 18(4): 459-479.
13 Eftekhari A, Jian Z, Ji X. Potassium secondary batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4404-4419.
14 Zhao J, Zou X, Zhu Y, et al. Electrochemical intercalation of potassium into graphite[J]. Advanced Functional Materials, 2016, 26(44): 8103-8110.
15 Yang C, Feng J, Lv F, et al. Metallic graphene-like VSe2 ultrathin nanosheets: superior potassium-ion storage and their working mechanism[J]. Advanced Materials, 2018, 30(27): 1800036.
16 Zhang Q, Mao J, Pang W K, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry[J]. Advanced Energy Materials, 2018, 8(15): 1703288.
17 He P, Yu H J, Li D, et al. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(9): 3680-3695.
18 Han M H, Gonzalo E, Singh G, et al. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(1): 81-102.
19 Kim H, Kim J C, Bo S H, et al. K-ion batteries based on a P2-type K0.6CoO2 cathode[J]. Advanced Energy Materials, 2017, 7(17): 1700098.
20 Kim H, Seo D H, Urban A, et al. Stoichiometric layered potassium transition metal oxide for rechargeable potassium batteries[J]. Chemistry of Materials, 2018, 30(18): 6532-6539.
21 Kim H, Seo D H, Kim J C, et al. Investigation of potassium storage in layered P3-type K0.5MnO2 cathode[J]. Advanced Materials, 2017, 29(37): 1702480.
22 Yabuuchi N, Hara R, Kajiyama M, et al. New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries[J]. Advanced Energy Materials, 2014, 4(13): 1301453.
23 Hironaka Y, Kubota K, Komaba S. P2- and P3-KxCoO2 as an electrochemical potassium intercalation host[J]. Chemical Communications, 2017, 53(26): 3693-3696.
24 Deng T, Fan X L, Luo C, et al. Self-templated formation of P2-type K0.6CoO2 microspheres for high reversible potassium-ion batteries[J]. Nano Letters, 2018, 18(2): 1522-1529.
25 Sada K, Barpanda P. P3-type layered K0.48Mn0.4Co0.6O2: a novel cathode material for potassium-ion batteries[J]. Chemical Communications, 2020, 56(15): 2272-2275.
26 Liu C L, Luo S H, Huang H B, et al. Layered potassium-deficient P2- and P3-type cathode materials KxMnO2 for K-ion batteries[J]. Chemical Engineering Journal, 2019, 356: 53-59.
27 Chong S K, Wu Y F, Chen Y Z, et al. Mn-based layered oxide microspheres assembled by ultrathin nanosheets as cathode material for potassium-ion batteries[J]. Electrochimica Acta, 2019, 293: 299-306.
28 Deng T, Fan X L, Chen J, et al. Layered P2-type K0.65Fe0.5Mn0.5O2 microspheres as superior cathode for high-energy potassium-ion batteries[J]. Advanced Functional Materials, 2018, 28(28): 1800219.
29 Liu C L, Luo S H, Huang H B, et al. Fe-doped layered P3-type K0.45Mn1-xFexO2 (x ≤ 0.5) as cathode materials for low-cost potassium-ion batteries[J]. Chemical Engineering Journal, 2019, 378: 1345-1353.
30 Choi J U, Kim J, Hwang J Y, et al. K0.54[Co0.5Mn0.5]O2: new cathode with high power capability for potassium-ion batteries[J]. Nano Energy, 2019, 61: 284-294.
31 Zhang Q, Didier C, Pang W K, et al. Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(30): 1900568.
32 Zhang X Y, Yang Y B, Qu X L, et al. Layered P2-type K0.44Ni0.22Mn0.78O2 as a high-performance cathode for potassium-ion batteries[J]. Advanced Functional Materials, 2019, 29(49): 1905679.
33 Liu C L, Luo S H, Huang H B, et al. Low-cost layered K0.45Mn0.9Mg0.1O2 as a high-performance cathode material for K-ion batteries[J]. ChemElectroChem, 2019, 6(8): 2308-2315.
34 Liu C L, Luo S H, Huang H B, et al. Influence of Na-substitution on the structure and electrochemical properties of layered oxides K0.67Ni0.17Co0.17Mn0.66O2 cathode materials[J]. Electrochimica Acta, 2018, 286: 114-122.
35 Sada K, Senthilkumar B, Barpanda P. Potassium-ion intercalation mechanism in layered Na2Mn3O7[J]. ACS Applied Energy Materials, 2018, 1(10): 5410-5416.
36 Lin B W, Zhu X H, Fang L Z, et al. Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries[J]. Advanced Materials, 2019, 31(24): 1900060.
37 Hwang J Y, Kim J, Yu T Y, et al. Development of P3-K0.69CrO2 as an ultra-high-performance cathode material for K-ion batteries[J]. Energy & Environmental Science, 2018, 11(10): 2821-2827.
38 Naveen N, Park W B, Singh S P, et al. KCrS2 cathode with considerable cyclability and high rate performance: the first K+ stoichiometric layered compound for potassium-ion batteries[J]. Small, 2018, 14(49): 1803495.
39 Naveen N, Han S C, Singh S P, et al. Highly stable P'3-K0.8CrO2 cathode with limited dimensional changes for potassium ion batteries[J]. Journal of Power Sources, 2019, 430: 137-144.
40 Deng L Q, Niu X G, Ma G S, et al. Layered potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries[J]. Advanced Functional Materials, 2018, 28(49): 1800670.
41 Kim H, Park I, Seo D H, et al. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study[J]. Journal of the American Chemical Society, 2012, 134(25): 10369-10372.
42 Han J, Li G N, Liu F, et al. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries[J]. Chemical Communications, 2017, 53(11): 1805-1808.
43 Zhang L, Zhang B, Wang C, et al. Constructing the best symmetric full K-ion battery with the NASICON-type K3V2(PO4)3[J]. Nano Energy, 2019, 60: 432-439.
44 Zheng S, Cheng S, Xiao S, et al. Partial replacement of K by Rb to improve electrochemical performance of K3V2(PO4)3 cathode material for potassium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 815: 152379.
45 Hyoung J, Heo J W, Chae M S, et al. Electrochemical exchange reaction mechanism and the role of additive water to stabilize the structure of VOPO4·2H2O as a cathode material for potassium-ion batteries[J]. ChemSusChem, 2019, 12(5): 1069-1075.
46 Mathew V, Kim S, Kang J, et al. Amorphous iron phosphate: potential host for various charge carrier ions[J]. NPG Asia Materials, 2014, 6(10): e138.
47 Sultana I, Rahman M M, Mateti S, et al. Approaching leactive KFePO4 phase for potassium storage by adopting an advanced design strategy[J]. Batteries & Supercaps, 2020, 3(5): 450-455.
48 Chihara K, Katogi A, Kubota K, et al. KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries[J]. Chemical Communications, 2017, 53(37): 5208-5211.
49 Lian R, Wang D, Ming X, et al. Phase transformation, ionic diffusion, and charge transfer mechanisms of KVOPO4 in potassium ion batteries: first-principles calculations[J]. Journal of Materials Chemistry A, 2018, 6(33): 16228-16234.
50 Liao J, Hu Q, Che B, et al. Competing with other polyanionic cathode materials for potassium-ion batteries via fine structure design: new layered KVOPO4 with a tailored particle morphology[J]. Journal of Materials Chemistry A, 2019, 7(25): 15244-15251.
51 Liao J, Hu Q, He X, et al. A long lifespan potassium-ion full battery based on KVPO4F cathode and VPO4 anode[J]. Journal of Power Sources, 2020, 451: 227739.
52 Kim H, Seo D H, Bianchini M, et al. A new strategy for high-voltage cathodes for K-ion batteries: stoichiometric KVPO4F[J]. Advanced Energy Materials, 2018, 8(26): 1801591.
53 Lin X, Huang J, Tan H, et al. K3V2(PO4)2F3 as a robust cathode for potassium-ion batteries[J]. Energy Storage Materials, 2019, 16: 97-101.
54 Kim H, Ishado Y, Tian Y, et al. Investigation of alkali-ion (Li, Na, and K) intercalation in KxVPO4F (x∼0) cathode[J]. Advanced Functional Materials, 2019, 29(34): 1902392.
55 Park W B, Han S C, Park C, et al. KVP2O7 as a robust high-energy cathode for potassium-ion batteries: pinpointed by a full screening of the inorganic registry under specific search conditions[J]. Advanced Energy Materials, 2018, 8(13): 1703099.
56 Nose M, Nakayama H, Nobuhara K, et al. Na4Co3(PO4)2P2O7: a novel storage material for sodium-ion batteries[J]. Journal of Power Sources, 2013, 234: 175-179.
57 Kim H, Park I, Lee S, et al. Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery[J]. Chemistry of Materials, 2013, 25(18): 3614-3622.
58 Park H, Kim H, Ko W, et al. Development of K4Fe3(PO4)2(P2O7) as a novel Fe-based cathode with high energy densities and excellent cyclability in rechargeable potassium batteries[J]. Energy Storage Materials, 2020, 28: 47-54.
59 Recham N, Rousse G, Sougrati M T, et al. Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes[J]. Chemistry of Materials, 2012, 24(22): 4363-4370.
60 Ko W, Park H, Jo J H, et al. Unveiling yavapaiite-type KFe(SO4)2 as a new Fe-based cathode with outstanding electrochemical performance for potassium-ion batteries[J]. Nano Energy, 2019, 66: 104184.
61 Tokoro H, Ohkoshi S. Novel magnetic functionalities of Prussian blue analogs[J]. Dalton Transactions, 2011, 40(26): 6825-6833.
62 Eftekhari A. Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1/2): 221-228.
63 Ling C, Chen J J, Mizuno F. First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: the important role of ionic radius[J]. Journal of Physical Chemistry C, 2013, 117(41): 21158-21165.
64 Morant-Giner M, Sanchis-Gual R, Romero J, et al. Prussian blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries[J]. Advanced Functional Materials, 2018, 28(27): 1706125.
65 Bie X F, Kubota K, Hosaka T, et al. A novel K-ion battery: hexacyanoferrate(Ⅱ)/graphite cell[J]. Journal of Materials Chemistry A, 2017, 5(9): 4325-4330.
66 You Y, Wu X L, Yin Y X, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2014, 7(5): 1643-1647.
67 Zhang C, Xu Y, Zhou M, et al. Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium‐ion batteries[J]. Advanced Functional Materials, 2017, 27(4): 1604307.
68 Xue L G, Li Y T, Gao H C, et al. Low-cost high-energy potassium cathode[J]. Journal of the American Chemical Society, 2017, 139(6): 2164-2167.
69 He G, Nazar L F. Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries[J]. ACS Energy Letters, 2017, 2(5): 1122-1127.
70 Zhu Y H, Yang X, Bao D, et al. High-energy-density flexible potassium-ion battery based on patterned electrodes[J]. Joule, 2018, 2(4): 736-746.
71 Chong S K, Wu Y F, Guo S W, et al. Potassium nickel hexacyanoferrate as cathode for high voltage and ultralong life potassium-ion batteries[J]. Energy Storage Materials, 2019, 22: 120-127.
72 Huang B, Liu Y C, Lu Z Y, et al. Prussian blue [K2FeFe(CN)6] doped with nickel as a superior cathode: an efficient strategy to enhance potassium storage performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16659-16667.
73 Huang B, Shao Y J, Liu Y C, et al. Improving potassium-ion batteries by optimizing the composition of Prussian blue cathode[J]. ACS Applied Energy Materials, 2019, 2(9): 6528-6535.
74 Heo J W, Chae M S, Hyoung J, et al. Rhombohedral potassium-zinc hexacyanoferrate as a cathode material for nonaqueous potassium-ion batteries[J]. Inorganic Chemistry, 2019, 58(5): 3065-3072.
75 Targholi E, Mousavi-Khoshdel S M, Rahmanifara M, et al. Cu- and Fe-hexacyanoferrate as cathode materials for potassium ion battery: a first-principles study[J]. Chemical Physics Letters, 2017, 687: 244-249.
76 Jiang X, Zhang T R, Yang L Q, et al. A Fe/Mn-based Prussian blue analogue as a K-rich cathode material for potassium-ion batteries[J]. ChemElectroChem, 2017, 4(9): 2237-2242.
77 Xue L, Li L, Huang Y X, et al. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries viain situ polymerization coating[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22339-22345.
78 Chen Y, Luo W, Carter M, et al. Organic electrode for non-aqueous potassium-ion batteries[J]. Nano Energy, 2015, 18: 205-211.
79 Xing Z, Jian Z, Luo W, et al. A perylene anhydride crystal as a reversible electrode for K-ion batteries[J]. Energy Storage Materials, 2016, 2: 63-68.
80 Fan L, Ma R, Wang J, et al. An ultrafast and highly stable potassium–organic battery[J]. Advanced Materials, 2018, 30(51): 1805486.
81 Tian B, Zheng J, Zhao C, et al. Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(16): 9997-10003.
82 Zhao J, Yang J, Sun P, et al. Sodium sulfonate groups substituted anthraquinone as an organic cathode for potassium batteries[J]. Electrochemistry Communications, 2018, 86: 34-37.
83 Li D, Tang W, Wang C, et al. A polyanionic organic cathode for highly efficient K-ion full batteries[J]. Electrochemistry Communications, 2019, 105: 106509.
84 Hu Y, Tang W, Yu Q, et al. Novel insoluble organic cathodes for advanced organic K‐ion batteries[J]. Advanced Functional Materials, 2020, 30(17): 2000675.
85 Hu Y, Ding H, Bai Y, et al. Rational design of a polyimide cathode for a stable and high-rate potassium-ion battery[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42078-42085.
86 Xiong M, Tang W, Cao B, et al. A small-molecule organic cathode with fast charge-discharge capability for K-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(35): 20127-20131.
87 Wang M, Tang Y B. A review on the features and progress of dual-ion batteries[J]. Advanced Energy Materials, 2018, 8(19): 1703320.
88 Zhang M, Song X H, Ou X W, et al. Rechargeable batteries based on anion intercalation graphite cathodes[J]. Energy Storage Materials, 2019, 16: 65-84.
89 Read J A, Cresce A V, Ervin M H, et al. Dual-graphite chemistry enabled by a high voltage electrolyte[J]. Energy & Environmental Science, 2014, 7(2): 617-620.
90 Ji B F, Zhang F, Wu N Z, et al. A dual-carbon battery based on potassium-ion electrolyte[J]. Advanced Energy Materials, 2017, 7(20): 1700920.
91 Fan L, Liu Q, Chen S H, et al. Potassium-based dual ion battery with dual-graphite electrode[J]. Small, 2017, 13(30): 1701011.
92 Ji B, Zhang F, Song X, et al. A novel potassium-ion-based dual-ion battery[J]. Advanced Materials, 2017, 29(19): 1700519.
93 Fan L, Liu Q, Xu Z, et al. An organic cathode for potassium dual-ion full battery[J]. ACS Energy Letters, 2017, 2(7): 1614-1620.
94 Li C, Xue J, Huang A, et al. Poly(N-vinylcarbazole) as an advanced organic cathode for potassium-ion-based dual-ion battery[J]. Electrochimica Acta, 2019, 297: 850-855.
[1] Chaoling HAN, Zhenqian CHEN. Effect of active carbon nanoparticles on electrochemical properties of phosphorus-nitrogen double-doped graphene [J]. CIESC Journal, 2020, 71(S1): 448-453.
[2] Jiahuan MA, Weiwei YANG, Yu BAI, Kening SUN. Research progress of two-dimensional metal organic frameworks and their derivatives for electrocatalytic water splitting [J]. CIESC Journal, 2020, 71(9): 4006-4030.
[3] Xueting FENG, Qingze JIAO, Qun LI, Caihong FENG, Yun ZHAO, Hansheng LI, Haijun LI, Huiqun CAI. Preparation and sodium storage performance of NiCo2S4/N,S-rGO nanocomposites [J]. CIESC Journal, 2020, 71(9): 4314-4324.
[4] Ling ZHANG, Hongmei CHEN, Zidong WEI. Recent advance in transition metal oxide-based materials for oxygen evolution reaction electrocatalysts [J]. CIESC Journal, 2020, 71(9): 3876-3904.
[5] Zhe BAI, Ruijian LI, Wenshuo HOU, Haijun LI, Zhenhua WANG. Synthesis of bimetallic sulfide CuCo2S4 and its application in lithium-sulfur batteries [J]. CIESC Journal, 2020, 71(9): 4282-4291.
[6] Yang XIAO, Chunming XU, Xiaoxia YANG, Lihong ZHANG, Wang SUN, Jinshuo QIAO, Zhenhua WANG, Kening SUN. Preparation and electrochemical properties of NiMn2O4 spinel oxide cathode [J]. CIESC Journal, 2020, 71(9): 4292-4302.
[7] Haitao CHEN, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Haijun LI, Kening SUN. Investigation on preparation and carbon catalytic ability of in-situ bimetallic nanoparticle YST composite anode [J]. CIESC Journal, 2020, 71(9): 4270-4281.
[8] Yuquan ZHANG, Shuai GUO, Yuhua WENG, Yongfei YANG, Yuanyu HUANG. Progresses of aggregation-induced emission materials in drug delivery and disease treatment [J]. CIESC Journal, 2020, 71(9): 4102-4111.
[9] Zhenkang LIN, Yaoxuan QIAO, Wei WANG, Hong YUAN, Cheng FAN, Kening SUN. Morphology prediction of lithium plating by finite element modeling and simulations based on non-linear kinetics [J]. CIESC Journal, 2020, 71(9): 4228-4237.
[10] Xin LIU, Pingli FENG, Wenshuo HOU, Zhenhua WANG, Kening SUN. Research progress of interlayers for lithium-sulfur batteries [J]. CIESC Journal, 2020, 71(9): 4031-4045.
[11] Yongsheng ZHANG, Liang ZHANG, Jun LI, Qian FU, Xun ZHU, Qiang LIAO, Yu SHI. Numerical simulation of performance of thermally regenerative ammonia-based battery with copper foam electrode [J]. CIESC Journal, 2020, 71(8): 3770-3779.
[12] Jingyu HU, Rong YAO, Yuhang PAN, Chao ZHU, Shuang SONG, Yi SHEN. Photo-assisted regeneration of titanium dioxide/layered double hydroxide for removal of organic dyes in water [J]. CIESC Journal, 2020, 71(7): 3296-3303.
[13] Zhenghao LIU, Xiaosong ZHANG, Changling WANG, Muxing ZHANG. Experimental study on melting performance of paraffin and paraffin/expanded graphite [J]. CIESC Journal, 2020, 71(7): 3362-3371.
[14] Xiaoming FAN, Xikui CHEN, Zihan WANG, Shuai CAO, Fengru CHENG, Zeheng YANG, Weixin ZHANG. Self-sacrificing templated preparation of nitrogen-doped molybdenum carbide/carbon as hydrogen evolution electrocatalyst [J]. CIESC Journal, 2020, 71(6): 2840-2849.
[15] Xidong LIN, Youchen TANG, Quanfei SU, Shaohong LIU, Dingcai WU. Hierarchical porous carbon materials: structure design, functional modification and new energy devices applications [J]. CIESC Journal, 2020, 71(6): 2586-2598.
Full text



[1] LI Jinlong, HE Changchun, MA Jun, PENG Changjun, LIU Honglai, HU Ying. Modeling of Surface Tension and Viscosity for Non-electrolyte Systems by Means of the Equation of State for Square-well Chain Fluids with Variable Interaction Range[J]. , 2011, 19(4): 533 -543 .
[2] HONG Xiaping, ZHANG Rong, TONG Shaoping, MA Chun’an. Preparation of Ti/PTFE-F-PbO2 Electrode with a Long Life from the Sulfamic Acid Bath and Its Application in Organic Degradation[J]. , 2011, 19(6): 1033 -1038 .
[3] CAI Kang, GUAN Xin, LUO Xing, Georg Fieg. Optimization of large-scale heat exchanger networks by evolution of sub-networks[J]. CIESC Journal, 2009, 60(9): 2265 -2270 .
[4] Zhang Qihong, Chen Minheng and Yuan Weikang (UNILAB Research Canter, East China Institute of Chemical Technology). Studies of Adiabatic Fixed-Bed Reactors(Ⅲ) Reactor Ignition and Temperature Profilesof Radial Flow Reactors[J]. , 1985, 36(4): 402 -406 .

GU Fang;LIU Chunjiang;YUAN Xigang;YU Guocong


Hybrid CFD and crunode meshwork method for estimating structured packing column efficiency

[J]. , 2005, 56(4): 587 -592 .
[6] ZHOU Bin;HAO Yingli;WANG Shimin .

Flame temperature measurement based on optical sectioning tomography

[J]. , 2010, 61(3): 612 -622 .
[7] Zhou Chunlong and Nan Xiaoping Department of Applied Chemistry, Tianjin University, Tianjin. Anti-flocculating Properties of CuPC Pigment[J]. , 1990, 41(5): 562 -567 .
[8] LIU Lihua, DU Xiaoze, YANG Lijun, YANG Yongping, LI Pei, WU Shoushan. Influence of solar radiation on operation of a direct air-cooling condenser system[J]. CIESC Journal, 2010, 61(10): 2535 -2539 .
[9] GUAN Yixin, PAN Haixue, YAO Shanjing. Refolding of recombinant human interferon-γ by hydrophobic interaction chromatography[J]. CIESC Journal, 2005, 56(6): 1076 -1080 .
[10] Zheng Chong and Lai Maiming (Beijing Institute of Chemical Technology, Beijing). The Uncertainty of Tranditional Methods of Kinetic Model Development and Kinetic Modeling by Regression Along Process Route Approach[J]. , 1991, 42(3): 380 -388 .