CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4350-4364.doi: 10.11949/0438-1157.20200561

• Reviews and monographs • Previous Articles     Next Articles

Recent advances of numbering-up technology of micro-dispersion devices

Yongjin CUI(),Yankai LI,Kai WANG,Jian DENG,Guangsheng LUO()   

  1. Department of Chemical Engineering, State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2020-05-11 Revised:2020-07-07 Online:2020-10-05 Published:2020-08-15
  • Contact: Guangsheng LUO;


Monodisperse droplets are templates for producing spherical particles and microcapsules, and related materials are widely used in optical display, drug delivery, bioassay, food processing and other fields. Micro-dispersion technology is a recognized new method to obtain microdroplets with tiny size, narrow particle size distribution and controllable structure by accurately controlling the multiphase flow in microchannels. However, due to the low throughput of a single microchannel, its large-scale industrial and commercial applications are seriously limited. To achieve high-throughput and easy-to-control production, it is the basic numbering-up strategy of micro-dispersion devices by parallelizing a large number of microdroplet generators and the network of fluid distribution channels onto a single chip. To maintain the monodispersity of droplets and the robustness of device, the uniform distribution of fluid in parallel microchannels is a key scientific issue. This paper systematically reviews the recent progress in the numbering-up technology of micro-dispersion devices. The manufacturing technologies and materials are analyzed. On this basis, the future research directions of numbering-up of micro-dispersion devices are prospected.

Key words: micro-dispersion, microchannels, numbering-up, uniform distribution, device fabrication

CLC Number: 

  • TQ 021.1
1 骆广生, 王凯, 吕阳成, 等. 微尺度下非均相反应的研究进展[J]. 化工学报, 2013, 64(1): 165-172.
Luo G S, Wang K, Lyu Y C, et al. Research and development of micro-scale multiphase reaction processes[J]. CIESC Journal, 2013, 64(1): 165-172.
2 陈宇超, 崔永晋, 王凯, 等. 阶梯式T型微通道内液滴、气泡分散规律[J]. 化工学报, 2020, 71(1): 265-273.
Chen Y C, Cui Y J, Wang K, et al. Droplet and bubble dispersion in step T-junction microchannel[J]. CIESC Journal, 2020, 71(1): 265-273.
3 Wang K, Zhang H M, Shen Y, et al. Thermoformed fluoropolymer tubing for in-line mixing[J]. Reaction Chemistry & Engineering, 2018, 3(5): 707-713.
4 Liu D, Jing Y, Wang K, et al. Reaction study of α-phase NaYF4:Yb,Er generation via a tubular microreactor: discovery of an efficient synthesis strategy[J]. Nanoscale, 2019, 11(17): 8363-8371.
5 Duraiswamy S, Khan S A. Droplet-based microfluidic synthesis of anisotropic metal nanocrystals[J]. Small, 2009, 5(24): 2828-2834.
6 Nightingale A M, Krishnadasan S H, Berhanu D, et al. A stable droplet reactor for high temperature nanocrystal synthesis[J]. Lab on a Chip, 2011, 11(7): 1221-1227.
7 Marre S, Adamo A, Basak S, et al. Design and packaging of microreactors for high pressure and high temperature applications[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11310-11320.
8 Cui Y J, Li Y K, Wang K, et al. High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels[J]. Journal of Flow Chemistry, 2020, 10(1): 271-282.
9 赵玉潮, 陈光文. 微化工系统的并行放大研究进展[J]. 中国科学: 化学, 2015, 45(1): 16-23.
Zhao Y C, Chen G W. Progress in research on numbering-up of microchemical system[J]. Scientia Sinica Chimica, 2015, 45(1): 16-23.
10 Holtze C. Large-scale droplet production in microfluidic devices—an industrial perspective[J]. Journal of Physics D: Applied Physics, 2013, 46(11): 114008.
11 Amstad E, Chemama M, Eggersdorfer M, et al. Robust scalable high throughput production of monodisperse drops[J]. Lab on a Chip, 2016, 16(21): 4163-4172.
12 Al-Rawashdeh M, Fluitsma L J M, Nijhuis T A, et al. Design criteria for a barrier-based gas-liquid flow distributor for parallel microchannels[J]. Chemical Engineering Journal, 2012, 181/182: 549-556.
13 Nisisako T, Ando T, Hatsuzawa T. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces[J]. Lab on a Chip, 2012, 12(18): 3426-3435.
14 Huang Y C, Han T T, Xuan J, et al. Design criteria and applications of multi-channel parallel microfluidic module[J]. Journal of Micromechanics and Microengineering, 2018, 28(10): 105021.
15 Jeong H H, Issadore D, Lee D. Recent developments in scale-up of microfluidic emulsion generation via parallelization[J]. Korean Journal of Chemical Engineering, 2016, 33(6): 1757-1766.
16 Romanowsky M B, Abate A R, Rotem A, et al. High throughput production of single core double emulsions in a parallelized microfluidic device[J]. Lab on a Chip, 2012, 12(4): 802-807.
17 Muluneh M, Issadore D. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets[J]. Lab on a Chip, 2013, 13(24): 4750-4754.
18 Jeong H H, Yelleswarapu V R, Yadavali S, et al. Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED)[J]. Lab on a Chip, 2015, 15(23): 4387-4392.
19 Zhang L X, Peng D Y, Lyu W J, et al. Uniformity of gas and liquid two phases flowing through two microchannels in parallel[J]. Chemical Engineering Journal, 2015, 263: 452-460.
20 Link D R, Anna S L, Weitz D A, et al. Geometrically mediated breakup of drops in microfluidic devices[J]. Phys. Rev. Lett., 2004, 92(5): 054503.
21 Abate A R, Weitz D A. Faster multiple emulsification with drop splitting[J]. Lab on a Chip, 2011, 11(11): 1911-1915.
22 Guo R W, Fu T T, Zhu C Y, et al. Hydrodynamics and mass transfer of gas-liquid flow in a tree-shaped parallel microchannel with T-type bifurcations[J]. Chemical Engineering Journal, 2019, 373: 1203-1211.
23 Su Y H, Chen G W, Kenig E Y. An experimental study on the numbering-up of microchannels for liquid mixing[J]. Lab on a Chip, 2015, 15(1): 179-187.
24 Hoang D A, Haringa C, Portela L M, et al. Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors[J]. Chemical Engineering Journal, 2014, 236: 545-554.
25 Wada Y, Schmidt M A, Jensen K F. Flow distribution and ozonolysis in gas-liquid multichannel microreactors[J]. Industrial & Engineering Chemistry Research, 2006, 45(24): 8036-8042.
26 Li W, Greener J, Voicu D, et al. Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles[J]. Lab on a Chip, 2009, 9(18): 2715-2721.
27 Su Y H, Kuijpers K, Hessel V, et al. A convenient numbering-up strategy for the scale-up of gas-liquid photoredox catalysis in flow[J]. Reaction Chemistry & Engineering, 2016, 1(1): 73-81.
28 Qiu M, Zha L, Song Y, et al. Numbering-up of capillary microreactors for homogeneous processes and its application in free radical polymerization[J]. Reaction Chemistry & Engineering, 2019, 4(2): 351-361.
29 Kuijpers K P L, van Dijk M A H, Rumeur Q G, et al. A sensitivity analysis of a numbered-up photomicroreactor system[J]. Reaction Chemistry & Engineering, 2017, 2(2): 109-115.
30 Conchouso D, Castro D, Khan S A, et al. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions[J]. Lab on a Chip, 2014, 14(16): 3011-3020.
31 Rijn C J M V, Elwenspoek M C. Micro filtration membrane sieve with silicon micro machining for industrial and biomedical applications[C]// Proceedings IEEE Micro Electro Mechanical Systems 1995. Amsterdam, Netherlands,1995: 83-87.
32 Zheng C, Zhao B C, Wang K, et al. Bubble generation rules in microfluidic devices with microsieve array as dispersion medium[J]. AIChE Journal, 2015, 61(5): 1663-1676.
33 Wang F J, Ding Y C, Xu J H. Continuous-flow synthesis of pigment red 146 in a microreactor system[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16338-16347.
34 Osuchowska P N, Ostrowski R, Sarzynski A, et al. Microstructured polyethylene terephthalate (PET) for microsieving of cancer cells[J]. Results Phys., 2019, 15: 102612.
35 Wang K, Lu Y C, Luo G S. Strategy for scaling-up of a microsieve dispersion reactor[J]. Chemical Engineering & Technology, 2014, 37(12): 2116-2122.
36 Lim L S, Hu M, Huang M C, et al. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells[J]. Lab on a Chip, 2012, 12(21): 4388-4396.
37 Hu Y P, Wang K, Han C L, et al. Liquid-liquid microdispersion method for the synthesis of TS-1 free of extra-framework Ti species[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12010-12017.
38 Dyrda K M, Grinschek F, Rabsch G, et al. Development of a microsieve based micro contactor for gas/liquid phase separation[J]. Separation and Purification Technology, 2019, 220: 238-249.
39 Wu X Y, Bai Z Y, Wang L, et al. Magnetic cell centrifuge platform performance study with different microsieve pore geometries[J]. Sensors (Basel), 2019, 20(1): 48.
40 Zweitzig D R, Tibbe A G, Nguyen A T, et al. Feasibility of a simple microsieve-based immunoassay platform[J]. J. Immunol. Methods, 2016, 437: 21-27.
41 Wang J C, Zhang F, Wang Y J, et al. A size-controllable preparation method for indium tin oxide particles using a membrane dispersion micromixer[J]. Chemical Engineering Journal, 2016, 293: 1-8.
42 Hornig N, Fritsching U. Liquid dispersion in premix emulsification within porous membrane structures[J]. Journal of Membrane Science, 2016, 514: 574-585.
43 Klein T Y, Treccani L, Rezwan K. Ceramic microbeads as adsorbents for purification technologies with high specific surface area, adjustable pore size, and morphology obtained by ionotropic gelation[J]. Journal of the American Ceramic Society, 2012, 95(3): 907-914.
44 Tan J, Xu J H, Wang K, et al. Rapid measurement of gas solubility in liquids using a membrane dispersion microcontactor[J]. Industrial & Engineering Chemistry Research, 2010, 49(20): 10040-10045.
45 Wang Y J, Zhang C L, Bi S W, et al. Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor[J]. Powder Technol., 2010, 202(1/2/3): 130-136.
46 Wang Y J, Xu D Q, Sun H T, et al. Preparation of pseudoboehmite with a large pore volume and a large pore size by using a membrane-dispersion microstructured reactor through the reaction of CO2 and a NaAlO2 solution[J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 3889-3894.
47 Du L, Tan J, Wang K, et al. Controllable preparation of SiO2 nanoparticles using a microfiltration membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2011, 50(14): 8536-8541.
48 Lu Y C, Zhang T B, Liu Y, et al. Preparation of FePO4 nano-particles by coupling fast precipitation in membrane dispersion microcontactor and hydrothermal treatment[J]. Chemical Engineering Journal, 2012, 210: 18-25.
49 Lu Y C, Liu Y, Zhou C, et al. Preparation of Li2CO3 nanoparticles by carbonation reaction using a microfiltration membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2014, 53(27): 11015-11020.
50 Li J H, Chen J, Wang Y J, et al. Hydration of acrylonitrile to produce acrylamide using biocatalyst in a membrane dispersion microreactor[J]. Bioresour. Technol., 2014, 169: 416-420.
51 Yao H B, Wang Y J, Luo G S. A size-controllable precipitation method to prepare CeO2 nanoparticles in a membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(17): 4993-4999.
52 Han C L, Hu Y P, Wang K, et al. Preparation and in-situ surface modification of CaCO3 nanoparticles with calcium stearate in a microreaction system[J]. Powder Technol., 2019, 356: 414-422.
53 Xia S T, Ding X F, Wang Y J, et al. Large-scale synthesis of dihydrostreptomycin via hydrogenation of streptomycin in a membrane dispersion microreactor[J]. Chemical Engineering Journal, 2018, 334: 2250-2254.
54 Nazir A, Schroën K, Boom R. Premix emulsification: a review[J]. Journal of Membrane Science, 2010, 362(1): 1-11.
55 Joscelyne S M, Trägårdh G. Membrane emulsification — a literature review[J]. Journal of Membrane Science, 2000, 169(1): 107-117.
56 Piacentini E, Drioli E, Giorno L. Membrane emulsification technology: twenty-five years of inventions and research through patent survey[J]. Journal of Membrane Science, 2014, 468: 410-422.
57 Guckenberger D J, de Groot T E, Wan A M, et al. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices[J]. Lab on a Chip, 2015, 15(11): 2364-2378.
58 Aurich J C, Reichenbach I G, Schüler G M. Manufacture and application of ultra-small micro end mills[J]. CIRP Annals, 2012, 61(1): 83-86.
59 Becker H, Heim U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures[J]. Sensors and Actuators A: Physical, 2000, 83(1): 130-135.
60 Abgrall P, Low L N, Nguyen N T. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding[J]. Lab on a Chip, 2007, 7(4): 520-522.
61 Waldbaur A, Rapp H, Länge K, et al. Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes[J]. Analytical Methods, 2011, 3(12): 2681-2716.
62 Au A K, Lee W, Folch A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices[J]. Lab on a Chip, 2014, 14(7): 1294-1301.
63 Attia U M, Marson S, Alcock J R. Micro-injection moulding of polymer microfluidic devices[J]. Microfluidics and Nanofluidics, 2009, 7(1): 1.
64 Tanzi S, Matteucci M, Christiansen T L, et al. Ion channel recordings on an injection-molded polymer chip[J]. Lab on a Chip, 2013, 13(24): 4784-4793.
65 Guckenberger D J, Berthier E, Beebe D J. High-density self-contained microfluidic KOALA kits for use by everyone[J]. Journal of Laboratory Automation, 2014, 20(2): 146-153.
66 Berthier E, Guckenberger D J, Cavnar P, et al. Kit-On-A-Lid-Assays for accessible self-contained cell assays[J]. Lab on a Chip, 2013, 13(3): 424-431.
67 Casavant B P, Guckenberger D J, Berry S M, et al. The VerIFAST: an integrated method for cell isolation and extracellular/intracellular staining[J]. Lab on a Chip, 2013, 13(3): 391-396.
68 Strotman L, O'connell R, Casavant B P, et al. Selective nucleic acid removal via exclusion (SNARE): capturing mRNA and DNA from a single sample[J]. Analytical Chemistry, 2013, 85(20): 9764-9770.
69 Bischel L L, Mader B R, Green J M, et al. Zebrafish entrapment by restriction array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging[J]. Lab on a Chip, 2013, 13(9): 1732-1736.
70 Bang Y B, Lee K M, Oh S. 5-axis micro milling machine for machining micro parts[J]. The International Journal of Advanced Manufacturing Technology, 2005, 25(9): 888-894.
71 Femmer T, Jans A, Eswein R, et al. High-throughput generation of emulsions and microgels in parallelized microfluidic drop-makers prepared by rapid prototyping[J]. ACS Appl. Mater. Interfaces, 2015, 7(23): 12635-12638.
72 Hanada Y, Sugioka K, Kawano H, et al. Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass[J]. Biomedical Microdevices, 2008, 10(3): 403-410.
73 Hanada Y, Sugioka K, Shihira-Ishikawa I, et al. 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria[J]. Lab on a Chip, 2011, 11(12): 2109-2115.
74 Zhou Y F. The recent development and applications of fluidic channels by 3D printing[J]. J. Biomed. Sci., 2017, 24(1): 80.
75 Zhang J M, Ji Q L, Duan H L. Three-dimensional printed devices in droplet microfluidics[J]. Micromachines (Basel), 2019, 10(11): 754.
76 Au A K, Huynh W, Horowitz L F, et al. 3D-printed microfluidics[J]. Angewandte Chemie International Edition, 2016, 55(12): 3862-3881.
77 Chan H N, Tan M J A, Wu H. Point-of-care testing: applications of 3D printing[J]. Lab on a Chip, 2017, 17(16): 2713-2739.
78 Gross B, Lockwood S Y, Spence D M. Recent advances in analytical chemistry by 3D printing[J]. Analytical Chemistry, 2017, 89(1): 57-70.
79 Chen C P, Mehl B T, Munshi A S, et al. 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review[J]. Analytical Methods, 2016, 8(31): 6005-6012.
80 Waheed S, Cabot J M, Macdonald N P, et al. 3D printed microfluidic devices: enablers and barriers[J]. Lab on a Chip, 2016, 16(11): 1993-2013.
81 Bhattacharjee N, Urrios A, Kang S, et al. The upcoming 3D-printing revolution in microfluidics[J]. Lab on a Chip, 2016, 16(10): 1720-1742.
82 Zhao H M, Yang F F, Fu J Z, et al. Printing@Clinic: from medical models to organ implants[J]. ACS Biomaterials Science & Engineering, 2017, 3(12): 3083-3097.
83 Bonyár A, Sántha H, Varga M, et al. Characterization of rapid PDMS casting technique utilizing molding forms fabricated by 3D rapid prototyping technology (RPT)[J]. International Journal of Material Forming, 2014, 7(2): 189-196.
84 Melchels F P W, Feijen J, Grijpma D W. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials, 2010, 31(24): 6121-6130.
85 Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Applied Physics Reviews, 2014, 1(4): 041303.
86 Lee J M, Zhang M, Yeong W Y. Characterization and evaluation of 3D printed microfluidic chip for cell processing[J]. Microfluidics and Nanofluidics, 2016, 20(1): 5.
87 Li X H, Abe T, Esashi M. Deep reactive ion etching of Pyrex glass using SF6 plasma[J]. Sensors and Actuators A: Physical, 2001, 87(3): 139-145.
88 Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles[J]. Lab on a Chip, 2008, 8(2): 287-293.
89 Baram A, Naftali M. Dry etching of deep cavities in Pyrex for MEMS applications using standard lithography[J]. Journal of Micromechanics and Microengineering, 2006, 16(11): 2287-2291.
90 Kolari K, Saarela V, Franssila S. Deep plasma etching of glass for fluidic devices with different mask materials[J]. Journal of Micromechanics and Microengineering, 2008, 18(6): 064010.
91 Xia Y N, Whitesides G M. Soft lithography[J]. Angewandte Chemie International Edition, 1998, 37(5): 550-575.
92 Mcdonald J C, Whitesides G M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices[J]. Accounts of Chemical Research, 2002, 35(7): 491-499.
93 Sia S K, Whitesides G M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies[J]. Electrophoresis, 2003, 24(21): 3563-3576.
[1] Ruiqi WANG, Zanjun GAO, Hua YANG, Wenchao HU, Hongbo ZHAN. Influence of airborne cold source parameters on evaporative cycle system performance [J]. CIESC Journal, 2020, 71(S1): 212-219.
[2] Boyao DU, Zhenhua QUAN, Longshu HOU, Yaohua ZHAO, Haibo REN. Performance of direct-expansion photovoltaic/thermal(PV/T)-air source heat pump system [J]. CIESC Journal, 2020, 71(S1): 368-374.
[3] Kui LIU, Minjie WANG, Danyang ZHAO, Yanshai WANG. Experimental research on micro-scale effect for dynamic viscoelastic properties of polymer melt [J]. CIESC Journal, 2020, 71(S1): 90-97.
[4] Pengfei WU, Ke WANG, Jue ZHAO. Flow pattern and pressure drop on shell side of shell and plate heat exchanger under adiabatic state [J]. CIESC Journal, 2020, 71(7): 3042-3049.
[5] Yuchao CHEN, Yongjin CUI, Kai WANG, Guangsheng LUO. Droplet and bubble dispersion in step T-junction microchannel [J]. CIESC Journal, 2020, 71(1): 265-273.
[6] Fei LI, Cuili YANG, Wenjing LI, Junfei QIAO. Optimal control of wastewater treatment process using NSGAII algorithm based on multi-objective uniform distribution [J]. CIESC Journal, 2019, 70(5): 1868-1878.
[7] Qianqing LIANG, Xuehu MA, Kai WANG, Jiang CHUN, Tingting HAO, Zhong LAN, Yaxiong WANG. Gas-liquid Taylor flow pressure drop in rectangular meandering microchannel [J]. CIESC Journal, 2019, 70(4): 1272-1281.
[8] Lan XU, Dawei PAN, Chaojun DENG, Weixing HUANG, Meifang LIU. Controlled size production of large double droplets in one-step microfluidic devices [J]. CIESC Journal, 2019, 70(12): 4617-4624.
[9] ZHOU Kan, LI Wei, LI Junye, ZHU Hua, SHENG Kuang, BAI Guanghui, CHANG Hao. Flow boiling heat transfer characteristics of superhydrophilic modified surface in microchannels [J]. CIESC Journal, 2018, 69(S2): 82-88.
[10] SUN Jianjun, CHEN Guoqi, JI Zhengbo, MA Chenbo. Analysis on leakage mechanism for contacting mechanical seal interface [J]. CIESC Journal, 2018, 69(4): 1528-1536.
[11] ZHANG Chong, FU Taotao, JIANG Shaokun, ZHU Chunying, MA Youguang. Bubble forming dynamics of highly viscous fluids in microfluidic flow-focusing cross channel device [J]. CIESC Journal, 2018, 69(2): 650-654.
[12] MA Rui, FU Taotao, ZHANG Qindan, LIU Cai, ZHU Chunying, MA Youguang. Formation and manipulation of ferrofluid droplets in Y-shaped flow-focusing microchannel [J]. CIESC Journal, 2018, 69(2): 602-610.
[13] LIN Guanyi, ZHU Chunying, FU Taotao, MA Youguang. Mass transfer performance of CO2 absorption into aqueous mixture of monoethanolamine with N-methyldiethanolamine in microchannel [J]. CIESC Journal, 2018, 69(11): 4675-4682.
[14] LI Yang, DU Le, GAO Ruomei, WU Cai, GONG Yahui. Controllable preparation of CuO-based nanofluids and precursors of composite films by in situ dispersion in microchannel [J]. CIESC Journal, 2018, 69(11): 4918-4928.
[15] DING Yuncheng, WANG Fajun, AI Ning, XU Jianhong. Research progress on continuous diazotization/azo-coupling reaction in microreactors [J]. CIESC Journal, 2018, 69(11): 4542-4552.
Full text



[1] LIN Bihua;GU Xingsheng.

Soft sensor modeling based on DE-LSSVM

[J]. , 2008, 59(7): 1681 -1685 .
[2] CAO Wei, ZHAO Yingkai, GAO Shiwei. Multi-class support vector machines based on fuzzy kernel cluster[J]. CIESC Journal, 2010, 61(2): 420 -424 .
[3] Qin Wei, Dai Youyuan and Wang Jiading (Department of Chemical Engineering, Tsinghua University, Beijing 100084). MASS TRANSFER CHARACTERISTICS IN ANNULAR PULSEDEXTRACTION COLUMN WITH DIFFERENT RATIO OFANNULAR WIDTH TO COLUMN DIAMETER[J]. , 1993, 44(6): 644 -650 .
[5] ZHANG Xian, LUO Caiwu, HUANG Denggao, LI An, LIU Juanjuan, CHAO Zisheng. Reaction mechanism of aldehydes and ammonia to form pyridine bases[J]. CIESC Journal, 2013, 64(8): 2875 -2882 .
[6] ZHANG Xuelai, MENG Xianglai, ZHAO Qunzhi, LI Chunlei. Ice nucleation of ice thermal storage air-condition[J]. CIESC Journal, 2014, 65(11): 4321 -4324 .
[7] ZHANG Qindan, FU Taotao, ZHU Chunying, MA Youguang. Formation and size prediction of slug droplet in viscoelastic fluid in flow-focusing microchannel[J]. CIESC Journal, 2016, 67(2): 504 -511 .
[8] LIANG Qingqing, HAN Hua, CUI Xiaoyu, GU Bo. Fault diagnosis for refrigeration system based on PCA-PNN[J]. CIESC Journal, 2016, 67(3): 1022 -1031 .
[9] CHEN Zhentao, WU Yun, XU Chunming. Progress on diffusion studies in zeolites using ZLC techniques[J]. CIESC Journal, 2016, 67(8): 3170 -3178 .
[10] ZHANG Rui, LIU Guili, WANG Yadong, LIU Haiyan, LIU Zhichang, MENG Xianghai. Reaction behaviors and feed characterization of light hydrocarbon catalytic pyrolysis for production of light olefins[J]. CIESC Journal, 2016, 67(8): 3387 -3393 .