CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4532-4552.doi: 10.11949/0438-1157.20200454

• Reviews and monographs • Previous Articles     Next Articles

Bio-inspired fog harvesting materials: from fundamental research to promotional strategy

Wei ZHOU(),Li CHEN,Jingcheng DU,Luxi TAN(),Lichun DONG,Cailong ZHOU()   

  1. School of Chemistry and Chemical Engineering, National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing 400044, China
  • Received:2020-04-29 Revised:2020-06-30 Online:2020-10-05 Published:2020-07-04
  • Contact: Luxi TAN,Cailong ZHOU;;


Nowadays, the water crisis has seriously affected people??s daily life due to water pollution and the increasing shortage of fresh water. Capturing water from the morning fog can relieve water shortages in dry areas. Inspired by the spontaneous fog trapping of Namib desert beetles, cacti, spider silk, and other animals or plants, various bionic fog collection materials with special wetting properties have been constructed by researchers. This review summarizes the latest research progress of bio-inspired fog harvesting materials in detail, discusses the design and preparation method of constructing bionic water collection materials from the four major bio-inspired strategies of fog collection, and introduces the design schemes to improve the efficiency of fog harvesting. Furthermore, the problems existing in the current bionic water collection process are analyzed, and the development trend of the materials in the future is forecasted.

Key words: water crisis, special wettability, bioinspired material, fog harvesting, efficiency

CLC Number: 

  • TB 34
1 Gorjian S, Ghobadian B. Solar desalination: a sustainable solution to water crisis in iran[J]. Renew. Sust. Energ. Rev., 2015, 48: 571-584.
2 El-Ghonemy A M K. Fresh water production from/by atmospheric air for arid regions, using solar energy: review[J]. Renew. Sust. Energ. Rev., 2012, 16: 6384-6422.
3 Grubert E A, Stillwell A S, Webber M E. Where does solar-aided seawater desalination make sense? A method for identifying sustainable sites[J]. Desalination, 2014, 339: 10-17.
4 Raluy R G, Serra L, Uche J. Life cycle assessment of desalination technologies integrated with renewable energies[J]. Desalination, 2005, 183: 81-93.
5 文刚, 郭志光, 刘维民. 仿生超润湿材料的研究进展[J]. 中国科学:化学, 2018, 48: 1531-1547.
Wen G, Guo Z G, Liu W M. Research progress of biomimetic superwetting materials [J]. Scientia Sinica: Chemistry, 2018, 48: 1531-1547.
6 江雷. 仿生智能纳米材料[M]. 北京: 科学出版社, 2015: 7.
Jiang L. Biomimetic Intelligent Nanomaterials [M]. Beijing: Science Press, 2015: 7.
7 Wu H, Zhang R, Sun Y, et al. Biomimetic nanofiber patterns with controlled wettability[J]. Soft Matter, 2008, 4: 2429-2433.
8 Avinash M B, Verheggen E, Schmuck C, et al. Self-cleaning functional molecular materials[J]. Angew. Chem., Int. Ed., 2012, 51: 10324-10328.
9 Abualhamayel H I, Gandhidasan P. A method of obtaining fresh water from the humid atmosphere[J]. Desalination, 1997, 113: 51-63.
10 Klemm O, Schemenauer R S, Lummerich A, et al. Fog as a fresh-water resource: overview and perspectives[J]. Ambio, 2012, 41: 221-234.
11 Bartholomew G A, Lighton J R B, Louw G N. Energetics of locomotion and patterns of respiration in tenebrionid beetles from the namib desert[J]. J. Comp. Physiol. B, 1985, 155: 155-162.
12 Ju J, Bai H, Zheng Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nat. Commun., 2012, 3: 1247.
13 Yi S, Wang J, Chen Z, et al. Cactus‐inspired conical spines with oriented microbarbs for efficient fog harvesting[J]. Adv. Mater. Technol., 2019, 4: 1900727.
14 Feng R, Xu C, Song F, et al. A bioinspired slippery surface with stable lubricant impregnation for efficient water harvesting[J]. ACS Appl. Mater. Interfaces, 2020, 12: 12373-12381.
15 陈振, 张增志, 杜红梅, 等. 仿生材料在集水领域应用的研究现状[J]. 材料工程, 2020, 48: 10-18.
Chen Z, Zhang Z Z, Du H M, et al. Research status of biomimetic materials in the field of water collection [J]. Materials Engineering, 2020, 48:10-18.
16 Yin K, Du H, Dong X, et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 2017, 9: 14620-14626.
17 Young T. An essay on the cohesion of fluids[J]. Phil. Trans. R. Soc. London, 1805, 95: 65-87.
18 Xia F, Jiang L. Bio‐inspired, smart, multiscale interfacial materials[J]. Adv. Mater., 2008, 20: 2842-2858.
19 Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. J. Am. Chem. Soc., 2016, 138: 1727-1748.
20 Berg J M, Eriksson L T, Claesson P M, et al. Three-component langmuir-blodgett films with a controllable degree of polarity[J]. Langmuir, 1994, 10: 1225-1234.
21 Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28: 988-994.
22 Cassie A, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40: 546-551.
23 Furmidge C. Studies at phase interfaces(I): The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. J. Colloid Interface Sci., 1962, 17: 309-324.
24 Li C, Li J, Chen C, et al. Tailoring ordered taper-nanopore arrays by combined nanosphere self-assembling, imprinting, anodizing and etching[J]. Chem. Commun., 2012, 48: 5100-5102.
25 Gao X, Jiang L. Biophysics: water-repellent legs of water striders[J]. Nature, 2004, 432: 36-38.
26 Feng L, Zhang Y, Xi J, et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24: 4114-4119.
27 Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414: 33-34.
28 Ju J, Bai H, Zheng Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nat. Commun., 2012, 3: 1-6.
29 Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463: 640-643.
30 Chen H, Zhang P, Zhang L, et al. Continuous directional water transport on the peristome surface of nepenthes alata[J]. Nature, 2016, 532: 85-89.
31 Daniel S. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291: 633-636.
32 Chaudhury M K, Whitesides G M. Correlation between surface free energy and surface constitution[J]. Science, 1992, 255: 1230-1232.
33 Lorenceau L, Qur D. Drops on a conical wire[J]. J. Fluid Mech., 2004, 510: 29-45.
34 Lee J, Hwang S, Cho D H, et al. Rf plasma based selective modification of hydrophilic regions on super hydrophobic surface[J]. Appl. Surf. Sci., 2017, 394: 543-553.
35 Gao Y, Wang J, Xia W, et al. Reusable hydrophilic-superhydrophobic patterned weft backed woven fabric for high-efficiency water-harvesting application[J]. ACS Sustain. Chem. Eng., 2018, 6: 7216-7220.
36 Wang Y, Zhang L, Wu J, et al. A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting[J]. J. Mater. Chem. A, 2015, 3: 18963-18969.
37 Cao M, Xiao J, Yu C, et al. Hydrophobic/hydrophilic cooperative Janus system for enhancement of fog collection[J]. Small, 2015, 11: 4379-4384.
38 Wang B, Zhang Y, Liang W, et al. A simple route to transform normal hydrophilic cloth into a superhydrophobic–superhydrophilic hybrid surface[J]. J. Mater. Chem. A, 2014, 2: 7845-7852.
39 Xu C, Feng R, Song F, et al. Desert beetle-inspired superhydrophilic/superhydrophobic patterned cellulose film with efficient water collection and antibacterial performance[J]. ACS Sustain. Chem. Eng., 2018, 6: 14679-14684.
40 Ye Q, Zhou F, Liu W. Bioinspired catecholic chemistry for surface modification[J]. Chem. Soc. Rev., 2011, 40: 4244-4258.
41 Takei G, Nonogi M, Hibara A, et al. Tuning microchannel wettability and fabrication of multiple-step Laplace valves[J]. Lab Chip, 2007, 7: 596-602.
42 Bai H, Wang L, Ju J, et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns[J]. Adv. Mater., 2014, 26: 5025-5030.
43 Zahner D, Abagat J, Svec F, et al. A facile approach to superhydrophilic-superhydrophobic patterns in porous polymer films[J]. Adv. Mater., 2011, 23: 3030-3034.
44 Seo J, Lee S, Lee J, et al. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires[J]. ACS Appl. Mater. Interfaces, 2011, 3: 4722-4729.
45 Zhang L, Wu J, Hedhili M N, et al. Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces[J]. J. Mater. Chem. A, 2015, 3: 2844-2852.
46 Nishimoto S, Kubo A, Nohara K, et al. TiO2-based superhydrophobic-superhydrophilic patterns: fabrication via an ink-jet technique and application in offset printing[J]. Appl. Surf. Sci., 2009, 255: 6221-6225.
47 Yu Z, Yun F F, Wang Y, et al. Desert beetle-inspired superwettable patterned surfaces for water harvesting[J]. Small, 2017, 13: 1701403.
48 Moazzam P, Tavassoli H, Razmjou A, et al. Mist harvesting using bioinspired polydopamine coating and microfabrication technology[J]. Desalination, 2018, 429: 111-118.
49 Tian X, Chen Y, Zheng Y, et al. Controlling water capture of bioinspired fibers with hump structures[J]. Adv. Mater., 2011, 23: 5486-5491.
50 Day R W, Mankin M N, Gao R, et al. Plateau-rayleigh crystal growth of periodic shells on one-dimensional substrates[J]. Nat. Nanotechnol., 2015, 10: 345-352
51 Bai H, Tian X, Zheng Y, et al. Direction controlled driving of tiny water drops on bioinspired artificial spider silks[J]. Adv. Mater., 2010, 22: 5521-5525.
52 Bai H, Ju J, Sun R, et al. Controlled fabrication and water collection ability of bioinspired artificial spider silks[J]. Adv. Mater., 2011, 23: 3708-3711.
53 Chen Y, Wang L, Xue Y, et al. Bioinspired spindle-knotted fibers with a strong water-collecting ability from a humid environment[J]. Soft Matter, 2012, 8: 11450-11454.
54 Bai H, Sun R, Ju J, et al. Large-scale fabrication of bioinspired fibers for directional water collection[J]. Small, 2011, 7: 3429-3433.
55 He X H, Wang W, Liu Y M, et al. Microfluidic fabrication of bio-inspired microfibers with controllable magnetic spindle-knots for 3D assembly and water collection[J]. ACS Appl. Mater. Interfaces, 2015, 7: 17471-17481.
56 Choi C H, Yi H, Hwang S, et al. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow[J]. Lab Chip, 2011, 11: 1477-1483.
57 Cheng Y, Zheng F, Lu J, et al. Bioinspired multicompartmental microfibers from microfluidics[J]. Adv. Mater., 2014, 26: 5184-5190.
58 Tian X, Bai H, Zheng Y, et al. Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting[J]. Adv. Funct. Mater., 2011, 21: 1398-1402.
59 Zhao L, Song C, Zhang M, et al. Bioinspired heterostructured bead-on-string fibers via controlling the wet-assembly of nanoparticles[J]. Chem. Commun., 2014, 50: 10651-10654.
60 Dong H, Wang N, Wang L, et al. Bioinspired electrospun knotted microfibers for fog harvesting[J]. ChemPhysChem, 2012, 13: 1153-1156.
61 Ju J, Yao X, Yang S, et al. Cactus stem inspired cone-arrayed surfaces for efficient fog collection[J]. Adv. Funct. Mater., 2014, 24: 6933-6938.
62 Peng Y, He Y, Yang S, et al. Magnetically induced fog harvesting via flexible conical arrays[J]. Adv. Funct. Mater., 2015, 25: 5967-5971.
63 Ju J, Xiao K, Yao X, et al. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection[J]. Adv. Mater., 2013, 25: 5937-5942.
64 Heng X, Xiang M, Lu Z, et al. Branched ZnO wire structures for water collection inspired by cacti[J]. ACS Appl. Mater. Interfaces, 2014, 6: 8032-8041.
65 Xing H, Cheng J, Zhou C, et al. Fog collection on a conical copper wire: effect of fog flow velocity and surface morphology[J]. Micro Nano Lett., 2018, 13: 1068-1070.
66 Li X, Yang Y, Liu L, et al. 3D‐printed cactus‐inspired spine structures for highly efficient water collection[J]. Adv. Mater. Interfaces, 2019, 7: 1-10.
67 Wong T S, Kang S H, Tang S K, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477: 443-447.
68 Wang Y, Qian B, Lai C, et al. Flexible slippery surface to manipulate droplet coalescence and sliding, and its practicability in wind-resistant water collection[J]. ACS Appl. Mater. Interfaces, 2017, 9: 24428-24432.
69 Huang Y, Stogin B B, Sun N, et al. A switchable cross-species liquid repellent surface[J]. Adv. Mater., 2017, 29: 1604641.
70 Chen H, Zhang L, Zhang P, et al. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of Nepenthes alata[J]. Small, 2017, 13: 1601676.
71 Li C, Li N, Zhang X, et al. Uni-directional transportation on peristome-mimetic surfaces for completely wetting liquids[J]. Angew. Chem., Int. Ed., 2016, 55:14988-14992.
72 Tandon V, Kang W S, Robbins T A, et al. Microfabricated reciprocating micropump for intracochlear drug delivery with integrated drug/fluid storage and electronically controlled dosing[J]. Lab Chip, 2016, 16: 829-846.
73 Moghadam A D, Omrani E, Menezes P L, et al. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—a review[J]. Compos. B. Eng., 2015, 77: 402-420.
74 Zhong L, Zhang R, Li J, et al. Efficient fog harvesting based on 1D copper wire inspired by the plant pitaya[J]. Langmuir, 2018, 34: 15259-15267.
75 Varanasi K K, Ming H, Bhate N, et al. Spatial control in the heterogeneous nucleation of water[J]. Appl. Phys. Lett., 2009, 95: 094101.
76 He M, Zhang Q, Zeng X, et al. Hierarchical porous surface for efficiently controlling microdroplets self-removal[J]. Adv. Mater., 2013, 25: 2291-2295.
77 Hu R, Wang N, Hou L, et al. A bioinspired hybrid membrane with wettability and topology anisotropy for highly efficient fog collection[J]. J. Mater. Chem. A, 2019, 7: 124-132.
78 Ren F, Li G, Zhang Z, et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection[J]. J. Mater. Chem. A, 2017, 5: 18403-18408.
79 Bai H, Zhang C, Long Z, et al. A hierarchical hydrophilic/hydrophobic cooperative fog collector possessing self-pumped droplet delivering ability[J]. J. Mater. Chem. A, 2018, 6: 20966-20972.
80 Liu W, Fan P, Cai M, et al. An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection[J]. Nanoscale, 2019, 11: 8940-8949.
81 Wang Y, Wang X, Lai C, et al. Biomimetic water-collecting fabric with light-induced superhydrophilic bumps[J]. ACS Appl. Mater. Interfaces, 2016, 8: 2950-2960.
82 Xing Y, Shang W, Wang Q, et al. Integrative bioinspired surface with wettable patterns and gradient for enhancement of fog collection[J]. ACS Appl. Mater. Interfaces, 2019, 11: 10951-10958.
83 Park K C, Kim P, Grinthal A, et al. Condensation on slippery asymmetric bumps[J]. Nature, 2016, 531(7592): 78-82.
84 Zhang X, Sun L, Wang Y, et al. Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping[J]. Proc. Natl. Acad. Sci. U.S.A., 2019, 116: 20863-20868.
85 Wang Y, Liang X, Ma K, et al. Nature-inspired windmill for water collection in complex windy environments[J]. ACS Appl. Mater. Interfaces, 2019, 11: 17952-17959.
86 Chen H, Ran T, Gan Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels[J]. Nat. Mater., 2018, 17: 935-942.
87 Li J, Zhou Y, Wang W, et al. A bio-inspired superhydrophobic surface for fog collection and directional water transport[J]. J. Alloys Compd., 2020, 819: 152968.
88 Kim S W, Kim J, Park S S, et al. Enhanced water collection of bio-inspired functional surfaces in high-speed flow for high performance demister[J]. Desalination, 2020, 479: 114314.
[1] Bowen LIU, Shuai DENG, Shuangjun LI, Li ZHAO, Zhenyu DU, Lijin CHEN. Experimental investigation on energy-efficiency performance of temperature swing adsorption system for CO2 capture [J]. CIESC Journal, 2020, 71(S1): 382-390.
[2] Xiaojia XU, Yongzhen WU, Weihong ZHU. Research progress on stability enhancement of CsPbX3 perovskite and photovoltaic devices [J]. CIESC Journal, 2020, 71(9): 3933-3949.
[3] Jian HUANG, Zhong ZHAO. Mechanism modeling and real-time estimation application of thermal efficiency for delayed coking furnace [J]. CIESC Journal, 2020, 71(7): 3140-3150.
[4] Chun YAO, Longlong HUANG, Jiangwei CHANG, Yiwang DING, Chang YU, Jieshan QIU. Optimization design of carbon molecular sieves and its I3- reduction performance [J]. CIESC Journal, 2020, 71(6): 2696-2704.
[5] Xiaoqin YE, Zhiyue WEN, Wangqiang SHEN, Xing LU. Applications of fullerene materials in perovskite solar cells [J]. CIESC Journal, 2020, 71(6): 2510-2529.
[6] Hui NI, Zili YANG, Ke ZHONG, Ruiyang TAO, Yuqian GU. Study on optimal heating power for internally-heated ultrasonic atomization liquid desiccant regeneration system [J]. CIESC Journal, 2020, 71(3): 1035-1044.
[7] Yingze LI, Lu YANG, Qi WANG, Siyu YANG. Modeling and simulation of gasification process in BGL furnace [J]. CIESC Journal, 2020, 71(3): 1174-1188.
[8] Xue LYU, Yue MOU, Yiwen MIU, Hanlu LIAO, Jiansu RAN, Jie ZHENG. Comparison of absorption efficiency of three hydrogen sulfide absorbents and optimization of absorption conditions of potassium iodate system [J]. CIESC Journal, 2020, 71(10): 4696-4703.
[9] Jianxiang ZHENG, Yukai LI, Xiaonan SUN, Huaichun ZHOU. Analysis of collision frequency of non-spherical particle agglomeration during turbulent agglomeration processes [J]. CIESC Journal, 2019, 70(S2): 228-236.
[10] Hao YANG, Eryan YAN. Simulation research of microwave heating efficiency for beamed energy thruster [J]. CIESC Journal, 2019, 70(S1): 93-98.
[11] Zhonglan HOU, Xinli WEI, Xinling MA, Xiangrui MENG. Experimental analysis of circulating water flow rate on performance of ORC waste heat power generation system [J]. CIESC Journal, 2019, 70(9): 3283-3290.
[12] Junjie LIN, Kun LUO, Shuai WANG, Chenshu HU, Jianren FAN. Verification of coarse-grained CFD-DEM method in multiple flow regimes [J]. CIESC Journal, 2019, 70(5): 1702-1712.
[13] Jihai DUAN, Shuaibiao HUANG, Chang GAO, Aqiang CHEN, Qingshan HUANG. Influence of slit structure in hydrocyclone conical section on solid-liquid separation performance [J]. CIESC Journal, 2019, 70(5): 1823-1831.
[14] Peng LI, Zhonghe HAN, Xiaoqiang JIA, Zhongkai MEI, Xu HAN. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system [J]. CIESC Journal, 2019, 70(4): 1532-1541.
[15] Hao LIU, Tianwei ZHANG, Dengyou XIA, Qiang LIANG, Huaibin WANG. Study on extinguishing efficiency in suppressing class A fire by gel-type core-shell particles [J]. CIESC Journal, 2019, 70(4): 1652-1660.
Full text



[1] ZHAO Xiaodong;XU Shenglin;YANG Chengzhong.

Multivariable neural network predictive model for BOF steelmaking

[J]. , 2010, 61(8): 2111 -2115 .
[2] QIN Wei,ZHANG Ying,LUO Xuehui and DAI Youyuan (Department of Chemical Engineering, Tsinghua University, Beijing?100084,China). SEPARATION OF OXALIC ACID AND GLYOXYLIC ACID BY EXTRACTION[J]. , 2001, 52(2): 135 -140 .
[3] JIAO Wei;LIU Qian;XIANG Shuguang. Research progress of reaction path synthesis methodology of chemical processes[J]. , 2010, 61(12): 3044 -3050 .
[4] Wu Hua, Yuan Quan and Zhu Baolin (Dalian Institute of Chemical Physics, Academia Sinica, Liaoning Dalian). A Novel Textural Model for Porous Solids——Two-parameter Model for Determining Effective Diffusivities[J]. , 1988, 39(5): 513 -521 .
[5] JIN Ningde, LI Weibo, ZHAO Xin, ZHOU Yan. Characterization of oil/water two-phase flow patterns in vertical upward pipes based on symbolic time series analysis[J]. CIESC Journal, 2005, 56(1): 116 -120 .
[6] Wang Tao and Li Chengyue (Department of Chemical Engineering, Beijing Institute of Chemical Technology, Beijing 100029). DYNAMICS OF ABSORPTIVE REACTORS[J]. , 1992, 43(6): 645 -651 .
[8] SUN Jianjun;GU Boqin;WEI Long.

Leakage model of contacting mechanical seal based on fractal geometry theory

[J]. , 2006, 57(7): 1626 -1631 .
[10] . [J]. CIESC Journal, 2011, 62(6): 1554 -1562 .