CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4365-4378.doi: 10.11949/0438-1157.20200445

• Reviews and monographs • Previous Articles     Next Articles

Recent progress in preparation of functional capsule membranes based on co-extrusion minifluidic technique

Wenying LIU1(),Xiaojie JU1,2,Rui XIE1,2,Wei WANG1,2,Zhuang LIU1,2,Liangyin CHU1,2()   

  1. 1.School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
    2.State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2020-04-29 Revised:2020-05-18 Online:2020-10-05 Published:2020-05-26
  • Contact: Liangyin CHU;


As a kind of encapsulation system, the capsule membrane has a unique internal cavity structure, which can encapsulate and protect active substances and is widely used in the fields of substance encapsulation and controlled release of drugs. Capsule membranes fabricated with calcium alginate (Ca-Alg) as shells process notable advantages such as good biocompatibility and degradability. Compared with other fabrication methods, co-extrusion minifluidic technique has the advantages of facile fabrication process and mild conditions for fabrication of Ca-Alg capsule membranes with uniform size and regulated structures. This paper reviews recent progress in fabrication and functionalization of Ca-Alg capsule membranes by co-extrusion minifluidic technique. Fabrication of Ca-Alg capsule membranes with single and multi-compartment, factors affecting mass transfer of Ca-Alg capsule membranes, encapsulation of cells for producing multicellular spheroids and investigating the mechanics of tumor progression in vitro with three-dimensional environments, and functionalization of Ca-Alg capsule membranes by addition of functional materials with thermo and pH-responsive switching functions are highlighted. This review provides guidance for the further design and fabrication of novel capsule membranes as well as their applications in enzyme catalytic reactions, immobilizations of cells and foods, and controlled release of chemicals.

Key words: capsule membranes, co-extrusion method, calcium alginate, encapsulation, functional materials

CLC Number: 

  • TQ 316
1 Agu R U, Ugwoke M I, Armand M, et al. The lung as a route for systemic delivery of therapeutic proteins and peptides[J]. Respir. Res., 2001, 2(4): 198-209.
2 Thote A J, Gupta R B. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release[J]. Nanomedicine, 2005, 1(1): 85-90.
3 Mu X T, Ju X J, Zhang L, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs[J]. J. Membr. Sci., 2019, 590: 117275.
4 Mei L, He F, Zhou R Q, et al. Novel intestinal-targeted Ca-alginate-based carrier for pH-responsive protection and release of lactic acid bacteria[J]. ACS Appl. Mater. Interfaces, 2014, 6(8): 5962-5970.
5 Hertzberg S, Kvittingen L, Anthonsen T, et al. Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions[J]. Enzyme Microb. Technol., 1992, 14(1): 42-47.
6 Mei L, Xie R, Yang C, et al. Bio-inspired mini-eggs with pH-responsive membrane for enzyme immobilization[J]. J. Membr. Sci., 2013, 429: 313-322.
7 Wang J Y, Yu H R, Xie R, et al. Alginate/protamine/silica hybrid capsules with ultrathin membranes for laccase immobilization[J]. AIChE J., 2013, 59(2): 380-389.
8 Pan X, Mercadé-Prieto R, York D, et al. Structure and mechanical properties of consumer-friendly PMMA microcapsules[J]. Ind. Eng. Chem. Res., 2013, 52(33): 11253-11265.
9 Long Y, Vincent B, York D, et al. Organic-inorganic double shell composite microcapsules[J]. Chem. Commun., 2010, 46(10): 1718-1720.
10 Teixeira M A, Rodríguez O, Rodrigues S, et al. A case study of product engineering: performance of microencapsulated perfumes on textile applications[J]. AIChE J., 2012, 58(6): 1939-1950.
11 Mou C L, Wang W, Li Z L, et al. Trojan-horse-like stimuli-responsive microcapsules[J]. Adv. Sci., 2018, 5(6): 1700960.
12 Rao W, Zhao S, Yu J, et al. Enhanced enrichment of prostate cancer stem-like cells with miniaturized 3D culture in liquid core-hydrogel shell microcapsules[J]. Biomaterials, 2014, 35(27): 7762-7773.
13 Lee K Y, Mooney D J. Alginate: properties and biomedical applications[J]. Prog. Polym. Sci., 2012, 37(1): 106-126.
14 Lin Y H, Liang H F, Chung C K, et al. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs[J]. Biomaterials, 2005, 26(14): 2105-2113.
15 Zhao S, Agarwal P, Rao W, et al. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells[J]. Integr. Biol., 2014, 6(9): 874-884.
16 Moghaddam M K, Mortazavi S M, Khayamian T. Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method[J]. J. Electrost., 2015, 73: 56-64.
17 Martins E, Poncelet D, Renard D. A novel method of oil encapsulation in core-shell alginate microcapsules by dispersion-inverse gelation technique[J]. React. Funct. Polym., 2017, 114: 49-57.
18 Liu L, Wu F, Ju X J, et al. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions[J]. J. Colloid Interface Sci., 2013, 404: 85-90.
19 Ren P W, Ju X J, Xie R, et al. Monodisperse alginate microcapsules with oil core generated from a microfluidic device[J]. J. Colloid Interface Sci., 2010, 343(1): 392-395.
20 Ben Messaoud G, Sánchez-González L, Probst L, et al. Influence of internal composition on physicochemical properties of alginate aqueous-core capsules[J]. J. Colloid Interface Sci., 2016, 469: 120-128.
21 Jiang Z Y, Zhang Y F, Li J, et al. Encapsulation of beta-glucuronidase in biomimetic alginate capsules for bioconversion of baicalin to baicalein[J]. Ind. Eng. Chem. Res., 2007, 46(7): 1883-1890.
22 Bremond N, Santanach-Carreras E, Chu L Y, et al. Formation of liquid-core capsules having a thin hydrogel membrane: liquid pearls[J]. Soft Matter., 2010, 6: 2484-2488.
23 Rolland L, Santanach-Carreras E, Delmas T, et al. Physicochemical properties of aqueous core hydrogel capsules[J]. Soft Matter., 2014, 10(48): 9668-9674.
24 Liang W G, Yang C, Wen G Q, et al. A facile and controllable method to encapsulate phase change materials with non-toxic and biocompatible chemicals[J]. Appl. Therm. Eng., 2014, 70(1): 817-826.
25 Wang J Y, Jin Y, Xie R, et al. Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane[J]. J. Colloid Interface Sci., 2011, 353(1): 61-68.
26 Huang L Y, Wu K, Zhang R, et al. Fabrication of multicore milli- and microcapsules for controlling hydrophobic drugs release using a facile approach[J]. Ind. Eng. Chem. Res., 2019, 58(36): 17017-17026.
27 Phawaphuthanon N, Behnam S, Koo S Y, et al. Characterization of core-shell calcium-alginate macrocapsules fabricated by electro-coextrusion[J]. Int. J. Biol. Macromol., 2014, 65: 267-274.
28 Ngamnikom P, Phawaphuthanon N, Kim M, et al. Fabrication of core-shell structured macrocapsules by electro-coextrusion with agar-hydrocolloid mixtures for precooked food applications: textural and release characteristics[J]. Int. J. Food Sci. Technol., 2017, 52(12): 2538-2546.
29 Poncelet D, Neufeld R J, Goosen M F A, et al. Formation of microgel beads by electric dispersion of polymer solutions[J]. AIChE J., 1999, 45(9): 2018-2023.
30 Li J, Zhang P. Formation and droplet size of EHD drippings induced by superimposing an electric pulse to background voltage[J]. J. Electrost., 2009, 67(4): 562-567.
31 Liao S L, He Y L, Wang D G, et al. Dynamic interfacial printing for monodisperse droplets and polymeric microparticles[J]. Adv. Mater. Technol., 2016, 1(1): 1600021.
32 Valet M, Pontani L L, Prevost A M, et al. Quasistatic microdroplet production in a capillary trap[J]. Phys. Rev. Appl., 2018, 9(1): 014002.
33 Xu P, Zheng X, Tao Y, et al. Cross-interface emulsification for generating size-tunable droplets[J]. Anal. Chem., 2016, 88(6): 3171-3177.
34 Liao S, Tao Y, Du W, et al. Interfacial emulsification: an emerging monodisperse droplet generation method for microreactors and bioanalysis[J]. Langmuir, 2018, 34(39): 11655-11666.
35 Huang F S, Niu Y, Zhu Z Q, et al. Oblique interface shearing (OIS): single-step microdroplet generation and on-demand positioning[J]. Soft Matter., 2019, 15: 4782-4786.
36 Zhu Z, Huang F, Yang C, et al. On-demand generation of double emulsions based on interface shearing for controlled ultrasound activation[J]. ACS Appl. Mater. Interfaces, 2019, 11(43): 40932-40943.
37 Hu Y, Xu P, Luo J, et al. Absolute quantification of H5-subtype avian influenza viruses using droplet digital loop-mediated isothermal amplification[J]. Anal. Chem., 2017, 89(1): 745-750.
38 Liao S L, Tao X L, Ju Y J, et al. Multichannel dynamic interfacial printing: an alternative multicomponent droplet generation technique for lab in a drop[J]. ACS Appl. Mater. Interfaces, 2017, 9(50): 43545-43552.
39 Wang W, Jones T B, Harding D R. On-chip double emulsion droplet assembly using electrowetting-on-dielectric and dielectrophoresis[J]. Fusion Sci. Technol., 2017, 59(1): 240-249.
40 Kim H, Kim J. A microfluidic-based dynamic microarray system with single-layer pneumatic valves for immobilization and selective retrieval of single microbeads[J]. Microfluid. Nanofluid., 2014, 16: 623-633.
41 Li M, Van Zee M, Goda K, et al. Size-based sorting of hydrogel droplets using inertial microfluidics[J]. Lab Chip, 2018, 18(17): 2575-2582.
42 Huang L R, Cox E C, Austin R H, et al. Continuous particle separation through deterministic lateral displacement[J]. Science, 2004, 304: 987-990.
43 Kuntaegowdanahalli S S, Bhagat A A, Kumar G, et al. Inertial microfluidics for continuous particle separation in spiral microchannels[J]. Lab Chip, 2009, 9(20): 2973-2980.
44 Huang F S, Zhu Z Q, Niu Y, et al. Coaxial oblique interface shearing: tunable generation and sorting of double emulsions for spatial gradient drug release[J]. Lab Chip, 2020, 20(7): 1249-1258.
45 Villar G, Heron A J, Bayley H. Formation of droplet networks that function in aqueous environments[J]. Nat. Nanotechnol., 2011, 6(12): 803-808.
46 Johnston A P R, Such G K, Caruso F. Triggering release of encapsulated cargo[J]. Angew. Chem. Int. Ed., 2010, 49(15): 2664-2666.
47 de Hoog H P M, Nallani M, Tomczak N. Self-assembled architectures with multiple aqueous compartments[J]. Soft Matter., 2012, 8(17): 4552-4561.
48 Sun B J, Shum H C, Holtze C, et al. Microfluidic melt emulsification for encapsulation and release of actives[J]. ACS Appl. Mater. Interfaces, 2010, 2(12): 3411-3416.
49 Kisak E T, Coldren B, Evans C A, et al. The vesosome — a multicompartment drug delivery vehicle[J]. Curr. Med. Chem., 2004, 11(2): 199-219.
50 Peters R J R W, Marguet M, Marais S, et al. Cascade reactions in multicompartmentalized polymersomes[J]. Angew. Chem. Int. Ed., 2014, 53(1): 146-150.
51 Huang X, Voit B. Progress on multi-compartment polymeric capsules[J]. Polym. Chem., 2013, 4(3): 435-443.
52 Kreft O, Prevot M, Mohwald H, et al. Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions[J]. Angew. Chem. Int. Ed., 2007, 46(29): 5605-5608.
53 Kreft O, Skirtach A G, Sukhorukov G B, et al. Remote control of bioreactions in multicompartment capsules[J]. Adv. Mater., 2007, 19(20): 3142-3145.
54 Elani Y, Gee A, Law R V, et al. Engineering multi-compartment vesicle networks[J]. Chem. Sci., 2013, 4(8): 3332-3338.
55 Elani Y, Law R V, Ces O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways[J]. Nat. Commun., 2014, 5, 5305.
56 Wang W, Xie R, Ju X J, et al. Controllable microfluidic production of multicomponent multiple emulsions[J]. Lab Chip, 2011, 11(9): 1587-1592.
57 Wang W, Luo T, Ju X J, et al. Microfluidic preparation of multicompartment microcapsules for isolated co-encapsulation and controlled release of diverse components[J]. Int. J. Nonlinear Sci. Numer. Simul., 2012, 13: 325-332.
58 Shum H C, Zhao Y J, Kim S H, et al. Multicompartment polymersomes from double emulsions[J]. Angew. Chem. Int. Ed., 2011, 50(7): 1648-1651.
59 Windbergs M, Zhao Y J, Heyman J, et al. Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives[J]. J. Am. Chem. Soc., 2013, 135(21): 7933-7937.
60 He F, Wang W, He X H, et al. Controllable multicompartmental capsules with distinct cores and shells for synergistic release[J]. ACS Appl. Mater. Interfaces, 2016, 8(13): 8743-8754.
61 何帆. 用于物质包封及pH响应性控制释放的微胶囊的制备与性能研究[D]. 成都: 四川大学, 2018.
He F. Preparation and performance of capsules for encapsulation and pH-responsive controlled release[D]. Chengdu: Sichuan University, 2018.
62 Davarcı F, Turan D, Ozcelik B, et al. The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique[J]. Food Hydrocolloids, 2017, 62: 119-127.
63 Lee B B, Ibrahim R, Chu S Y, et al. Alginate liquid core capsule formation using the simple extrusion dripping method[J]. J. Polym. Eng., 2015, 35(4): 311-318.
64 Zhao Y Y, Hu F P, Evans J J, et al. Study of sol-gel transition in calcium alginate system by population balance model[J]. Chem. Eng. Sci., 2011, 66(5): 848-858.
65 Blandino A, Macias M, Cantero D. Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics[J]. Biosci. Bioeng., 1999, 88(6): 686-689.
66 Hecht H, Srebnik S. Structural characterization of sodium alginate and calcium alginate[J]. Biomacromolecules, 2016, 17(6): 2160-2167.
67 Kim J B, Stein R, O'hare M J. Three-dimensional in vitro tissue culture models of breast cancer—a review[J]. Breast Cancer Res. Treat., 2004, 85(3): 281-291.
68 Lee M Y, Kumar R A, Sukumaran S M, et al. Three-dimensional cellular microarray for high-throughput toxicology assays[J]. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(1): 59-63.
69 Lee K H, No D Y, Kim S H, et al. Diffusion-mediated in situ alginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane[J]. Lab Chip, 2011, 11(6): 1168-1173.
70 Chen M C, Gupta C M, Cheung K C. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening[J]. Biomed. Microdevices, 2010, 12(4): 647-654.
71 Kim C, Chung S, Kim Y E, et al. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid[J]. Lab Chip, 2011, 11(2): 246-252.
72 Alessandri K, Sarangi B R, Gurchenkov V V, et al. Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro[J]. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(37): 14843-14848.
73 He F, Mei L, Ju X J, et al. pH-responsive controlled release characteristics of solutes with different molecular weights diffusing across membranes of Ca-alginate/protamine/silica hybrid capsules[J]. J. Membr. Sci., 2015, 474: 233-243.
74 Mei L, Xie R, Yang C, et al. pH-responsive Ca-alginate-based capsule membranes with grafted poly(methacrylic acid) brushes for controllable enzyme reaction[J]. Chem. Eng. J., 2013, 232: 573-581.
75 Andrique L, Recher G, Alessandri K, et al. A model of guided cell self-organization for rapid and spontaneous formation of functional vessels[J]. Sci. Adv., 2019, 5: eaau6562.
[1] Wenhui ZHU, Xiahui WANG, Xintong YANG, Xingrun WANG, Jun HE, Guoxin HUANG, Guohua JI. Mechanisms of anti-agglomeration and anti-clogging by using zero-valent iron entrapmented in calcium alginate beads [J]. CIESC Journal, 2020, 71(5): 2344-2351.
[2] Weihao WANG, Xin YANG, Fei LI, Mengmeng SUN, Yaolei WANG, Tao MENG. E@Alg@s-TiO2 microsphere stabilized O/W Pickering emulsion and the enhancement of interfacial enzymatic catalysis [J]. CIESC Journal, 2019, 70(12): 4777-4786.
[3] Quanwei CAI, Xiaojie JU, Rui XIE, Wei WANG, Zhuang LIU, Liangyin CHU. Recent progress in controllable preparation of anisotropic microparticle functional materials based on microfluidics [J]. CIESC Journal, 2019, 70(10): 3738-3747.
[4] LEI Mingyue, YAN Chao, CUI Li, ZHANG Chuanjie, LIU Yun, WANG Huaifang, ZHU Ping. Gelatinization modification of calcium alginate fibers nonwoven fabrics and mechanism research [J]. CIESC Journal, 2018, 69(4): 1765-1773.
[5] SU Yunxiang, QUAN Xuebo, MIN Wenfeng, QIAO Laicong, LI Libo, ZHOU Jian. Dissipative particle dynamics simulations on loading and release of doxorubicin by PAMAM dendrimers [J]. CIESC Journal, 2017, 68(5): 1757-1766.
[6] AN Lianying, ZHANG Chunxia, HUANG Xianjiang. Preparation of ammonium tungstophosphate-calcium alginate composite adsorbent and adsorption thermodynamic and kinetic characteristics to rubidium [J]. CIESC Journal, 2016, 67(4): 1378-1385.
[7] HE Fan, XIE Rui, JU Xiaojie, WANG Wei, LIU Zhuang, CHU Liangyin. Recent progress in fabrication and functionalization of Ca-alginate capsules with ultrathin membranes [J]. CIESC Journal, 2015, 66(8): 2817-2823.
[8] CHU Liangyin,WANG Wei,JU Xiaojie,XIE Rui. Progress of construction of micro-scale phase interfaces and preparation of novel functional materials with microfluidics [J]. Chemical Industry and Engineering Progree, 2014, 33(09): 2229-2234.
[9] CHEN Sufen, LIU Yiyang, SU Lin, QI Xiaobo, SHI Ruiting, LIU Meifang, ZHANG Zhanwen, LI Bo. Influence of double emulsions solidification rate on sphericity of poly(α-methyl styrene)capsules in microencapsulation process [J]. CIESC Journal, 2013, 64(7): 2446-2452.
[10] XIA Fei, JIN Heyang, ZHAO Yaping, GUO Xinqiu. Supercritical Antisolvent-based Technology for Preparation of Vitamin D3 Proliposome and Its Characteristics [J]. , 2011, 19(6): 1039-1046.
[11] ZHANG Zhengguo,YAN Zhipeng,FANG Xiaoming,FANG Yutang,GAO Xuenong. Research development of applications of nanotechnology in heat transfer enhancement [J]. , 2011, 30(1): 34-.
[12] LIU Jiefeng, REN Yiran, YAO Shanjing. Repeated-batch Cultivation of Encapsulated Monascus purpureus by Polyelectrolyte Complex for Natural Pigment Production [J]. , 2010, 18(6): 1013-1017.
[13] GAO Wei,XIN Meihua,LI Mingchun,LI Li,QIU Feng. Research progress of application of diacylhydrazine compounds [J]. , 2009, 28(5): 882-.
[14] GAO Aihuan,PI Pihui,WEN Xiufang,CHENG Jiang,YANG Zhuoru. Research progress of surface modification of aluminum pigments for corrosion protection [J]. , 2009, 28(3): 485-.
[15] WU Xue,XIN Zhong,YUAN Weikang. Review on structure and biochemical characteristic of phosphatidylcholine analogous polymers [J]. , 2008, 27(9): 1375-.
Full text



[1] Ge Shiying, Cai Yunsheng and Li Pangsheng(East China Institute of Chemical Technology, Shanghai). Effective Gas-Liquid Interfacial Area of Trickle Bed with Small Particles[J]. , 1989, 40(5): 549 -555 .
[2] SHENTU Baoqing; WU Jianyi;WENG Zhixue.

Effect of structure of polymer ligands on oxygen-binding properties of cobaltporphyrin complexes

[J]. , 2006, 57(2): 409 -413 .
[3] FENG YongWU DeliMA Luming. Reductive pretreatment of printing and dyeing wastewater by ferrous hydroxy complex[J]. , 2011, 62(7): 2033 -2041 .

CHEN Lan;SHI Huixiang;WANG Dahui



[J]. , 2004, 55(11): 1859 -1863 .
[5] CHEN Heng, LI Tingxian, WANG Liwei, WU Jingyi, WANG Ruzhu, Oliveira R G. Sorption performance of consolidated composite sorbent used in solar-powered sorption air-conditioning system[J]. CIESC Journal, 2009, 60(5): 1097 -1103 .
[6] . Properties of waterborne polyurethane with phosphorusnitrogen synergy effects[J]. CIESC Journal, 2012, 63(2): 653 -657 .
[7] ZOU Deqiu1, XIAO Rui2, FENG Ziping2, GUO Jiangrong1. Heat transfer characteristics of high melting point paraffin  emulsions for latent heat transportation[J]. CIESC Journal, 2012, 63(4): 1019 -1024 .
[8] ZHANG Xian, LUO Caiwu, HUANG Denggao, LI An, LIU Juanjuan, CHAO Zisheng. Reaction mechanism of aldehydes and ammonia to form pyridine bases[J]. CIESC Journal, 2013, 64(8): 2875 -2882 .
[9] MU Ruihua, WU Wenhui. Microstructure “lock-in” of wormlike micelles in aqueous cationic trimer surfactant systems[J]. CIESC Journal, 2013, 64(9): 3301 -3307 .
[10] JING Xiaobo,SHEN Youqing. Amphiphilic brush copolymers of poly(ethylene glycol):Synthesis and applications in drug delivery[J]. Chemical Industry and Engineering Progree, 2013, 32(12): 2793 -2799 .