CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4621-4631.doi: 10.11949/0438-1157.20200313

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Experiment and numerical simulation of chaotic mixing performance enhanced by perturbed rigid-flexible impeller in stirred tank

Zuohua LIU1,3(),Hongjun WEI1,3,Xia XIONG1,3,Changyuan TAO1,3,Yundong WANG2,Fangqin CHENG4   

  1. 1.School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
    2.Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    3.State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
    4.Institute of Resources and Environment Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
  • Received:2020-03-24 Revised:2020-04-26 Online:2020-10-05 Published:2020-05-25
  • Contact: Zuohua LIU E-mail:liuzuohua@cqu.edu.cn

Abstract:

To eliminate the isolated mixing regions in the stirred tank, factors associated with chaotic mixing performance were studied, including flow field structure and fluid velocity of rigid RT impeller (R-RT), perturbed rigid RT impeller (PR-RT) and perturbed rigid-flexible RT impeller (PRF-RT). The maximum Lyapunov exponent (LLE) and multi-scale entropy (MSE) were calculated by using Matlab software programming, and the differences in flow field structure and fluid velocity of the three blade systems were studied through computational fluid mechanics. The experimental and computational results showed that perturbed rigid-flexible RT impeller could destroy the boundary of the mesostatic flow field in the isolated mixing regions and the symmetry flow in the process of fluid mixing through the random disturbance of the flexible blade, eliminating the isolated mixing regions. At 90 r/min, the LLE of the perturbed rigid-flexible RT impeller is larger than that of rigid RT impeller and perturbed rigid RT impeller. The LLE of the rigid-flexible RT impeller compared with the rigid RT impeller and perturbed rigid RT impeller increases 13.29% and 7.25% respectively and the MSE of the perturbed rigid-flexible RT impeller is also larger than that of rigid RT impeller and perturbed rigid RT impeller. The perturbed rigid-flexible RT impeller enhances the flow field instability, forms an asymmetric flow field structure, and reduces the distribution range of isolated mixing regions. The perturbed rigid-flexible RT impeller enhances the energy dissipation of the blade, improves the fluid velocity at the bottom and top of the tank and the wall of the tank, and reduces the mixing time.

Key words: perturbed rigid-flexible impeller, largest Lyapunov exponents, multi-scale entropy, numerical simulation

CLC Number: 

  • TQ 027.2

Fig.1

Mixing experimental apparatus and mesh model"

Fig.2

Impellers used in experiment and impeller size"

Fig.3

Grid independence (R-RT)"

Fig.4

Effect of impeller types on θm"

Fig.5

Effect of impeller types on LLE"

Fig.6

Flexible pieces shape in experiment"

Fig.7

Effect of flexible piece shape on LLE"

Fig.8

Effect of impeller types on MSE"

Fig.9

Effect of flexible piece shape on MSE"

Fig.10

Effect of impeller types on P"

Fig.11

Effect of impeller types on contour plots of velocity magnitude"

Fig.12

Effect of impeller types on the area size of fluid moving speed (V≤0.20 m/s)"

Fig.13

Effect of impeller types on velocity magnitude of axial direction"

Fig.14

Effect of impeller types on velocity magnitude of radial direction"

1 Mahmoud A, Cézac P, Hoadley A F A, et al. A review of sulfide minerals microbially assisted leaching in stirred tank reactors[J]. International Biodeterioration & Biodegradation, 2017, 119: 118-146.
2 Ghotli R A, Shafeeyan M S, Abbasi M R, et al. Macromixing study for various designs of impellers in a stirred vessel[J]. Chemical Engineering and Processing: Process Intensification, 2020, 148: 107794.
3 Ghotli R A, Abbasi M R, Bagheri A H, et al. Experimental and modeling evaluation of droplet size in immiscible liquid-liquid stirred vessel using various impeller designs[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100: 26-36.
4 Vasconcelos J M T, Orvalho S C P, Rodrigues A M A F, et al. Effect of blade shape on the performance of six-bladed disk turbine impellers[J]. Industrial & Engineering Chemistry Research, 2000, 39(1): 203-213.
5 Xu B, Gilchrist J F. Shear migration and chaotic mixing of particle suspensions in a time-periodic lid-driven cavity[J]. Physics of Fluids, 2010, 22(5): 053301.
6 Gu D Y, Liu Z H, Li J, et al. Intensification of chaotic mixing in a stirred tank with a punched rigid-flexible impeller and a chaotic motor[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 1-9.
7 Cudak M, Karcz J. Local momentum transfer process in a wall region of an agitated vessel equipped with an eccentric impeller[J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 4140-4149.
8 栾德玉, 魏星, 陈一鸣. 错位六弯叶桨搅拌假塑性流体流场宏观不稳定性数值模拟[J]. 化工学报, 2018, 69(5): 1999-2006.
Luan D Y, Wei X, Chen Y M. Numerical simulation of macroscopic instability induced by 6PBT impeller in a stirred tank with pseudoplastic fluid[J]. CIESC Journal, 2018, 69(5): 1999-2006.
9 栾德玉, 张盛峰, 郑深晓, 等. 基于流固耦合的错位桨搅拌假塑性流体动力学特性[J]. 化工学报, 2017, 68(6): 2328-2335.
Luan D Y, Zhang S F, Zheng S X, et al. Dynamic characteristics of impeller of perturbed six-bent-bladed turbine in pseudoplastic fluid based on fluid-structure interaction[J]. CIESC Journal, 2017, 68(6): 2328-2335.
10 Yang F L, Zhou S J, An X H. Gas-liquid hydrodynamics in a vessel stirred by dual dislocated-blade Rushton impellers[J]. Chinese Journal of Chemical Engineering, 2015, 23(11): 1746-1754.
11 Luan D Y, Zhang S F, Lu J P, et al. Chaotic characteristics enhanced by impeller of perturbed six-bent-bladed turbine in stirred tank[J]. Results in Physics, 2017, 7: 1524-1530.
12 Luan D Y, Chen Q, Zhou S J. Numerical simulation and analysis of power consumption and Metzner-Otto constant for impeller of 6PBT[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3): 635-640.
13 刘作华, 孙瑞祥, 王运东, 等. 刚-柔组合桨强化流体混沌混合[J]. 化工学报, 2014, 65(9): 3340-3349.
Liu Z H, Sun R X, Wang Y D, et al. Chaotic mixing intensified by rigid-flexible coupling impeller[J]. CIESC Journal, 2014, 65(9): 3340-3349.
14 刘作华, 曾启琴, 杨鲜艳, 等. 刚柔组合搅拌桨与刚性桨调控流场结构的对比[J]. 化工学报, 2014, 65(6): 2078-2084.
Liu Z H, Zeng Q Q, Yang X Y, et al. Flow field structure with rigid-flexible impeller and rigid impeller[J]. CIESC Journal, 2014, 65(6): 2078-2084.
15 刘作华, 陈超, 刘仁龙, 等. 刚柔组合搅拌桨强化搅拌槽中流体混沌混合[J]. 化工学报, 2014, 65(1): 61-70.
Liu Z H, Chen C, Liu R L, et al. Chaotic mixing enhanced by rigid-flexible impeller in stirred vessel[J]. CIESC Journal, 2014, 65(1):61-70.
16 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625.
Yang F L, Zhang C X, Su T L. Power and flow characteristics of flexible-blade Rushton impeller[J]. CIESC Journal, 2020, 71(2): 614-625.
17 Steiros K, Bruce P J K, Buxton O R H, et al. Effect of blade modifications on the torque and flow field of radial impellers in stirred tanks[J]. Physical Review Fluids, 2017, 2(9): 094802.
18 Steiros K, Bruce P J K, Buxton O R H, et al. Power consumption and form drag of regular and fractal-shaped turbines in a stirred tank[J]. AIChE Journal, 2017, 63(2): 843-854.
19 Xiao J, Zou C, Liu M, et al. Mixing in a soft-elastic reactor (SER) characterized using an RGB based image analysis method[J]. Chemical Engineering Science, 2018, 181: 272-285.
20 Gu D Y, Cheng C, Liu Z H, et al. Numerical simulation of solid-liquid mixing characteristics in a stirred tank with fractal impellers[J]. Advanced Powder Technology, 2019, 30(10): 2126-2138.
21 Gu D Y, Liu Z H, Xu C L, et al. Solid-liquid mixing performance in a stirred tank with a double punched rigid-flexible impeller coupled with a chaotic motor[J]. Chemical Engineering & Processing: Process Intensification, 2017, 118: 37-46.
22 Başbuğ S, Papadakis G, Vassilicos J C. Reduced power consumption in stirred vessels by means of fractal impellers[J]. AIChE Journal, 2018, 64(4): 1485-1499.
23 Ascanio G. Mixing time in stirred vessels: a review of experimental techniques[J]. Chinese Journal of Chemical Engineering, 2015, 23(7): 1065-1076.
24 朱俊, 周政霖, 刘作华, 等. 刚柔组合搅拌桨强化流体混合的流固耦合行为[J]. 化工学报, 2015, 66(10): 3849-3856.
Zhu J, Zhou Z L, Liu Z H, et al. Fluid-structure interaction in liquid mixing intensified by flexible-rigid impeller[J]. CIESC Journal, 2015, 66(10): 3849-3856.
25 Rosenstein M T, Collins J J, Luca C J D, et al. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D: Nonlinear Phenomena, 1993, 65(1):117-134.
26 Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985, 16(3):285-317.
27 Hu H N, Liu D W. The judgment of chaotic detection system􀆳s state based on the Lyapunov exponent[J]. Procedia Engineering, 2012, 29: 2894-2898.
28 熊黠, 刘作华, 谷德银, 等. 刚柔组合桨强化粉煤灰酸浸搅拌槽内固液混沌混合[J]. 化工学报, 2019, 70(5): 1693-1701.
Xiong X, Liu Z H, Gu D Y, et al. Chaotic mixing process of fly ash in acid leaching tank intensified by rigid-flexible impeller[J]. CIESC Journal, 2019, 70(5): 1693-1701.
29 冉绍辉, 周慎杰, 杨锋苓, 等. 错位Rushton桨气液分散特性和传质性能实验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1368-1373.
Ran S H, Zhou S J, Yang F L, et al. Experimental study on gas-liquid dispersion and mass transfer of dislocated-blade Rushton impeller[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(7): 1368-1373.
30 杨锋苓, 周慎杰. 错位Rushton桨的水动力学特性[J]. 华中科技大学学报(自然科学版), 2016, 44(2): 31-35.
Yang F L, Zhou S J. Characterization on hydrodynamics of dislocated-blade Rushton impeller[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(2): 31-35.
31 谷德银, 刘作华, 邱发成, 等. 穿流-刚柔组合桨强化固液两相的悬浮行为[J]. 化工学报, 2017, 68(12): 4556-4564.
Gu D Y, Liu Z H, Qiu F C, et al. Solid-liquid suspension behavior intensified by punched rigid-flexible impeller[J]. CIESC Journal, 2017, 68(12): 4556-4564.
32 Kulkarni A A, Jha N, Singh A, et al. Fractal impeller for stirred tank reactors[J]. Industrial & Engineering Chemistry Research, 2011, 50(12): 7667-7676.
33 Mule G M, Lohia R, Kulkarni A A. Effect of number of branches on the performance of fractal impeller in a stirred tank: mixing and hydrodynamics[J]. Chemical Engineering Research & Design, 2016, 108: 164-175.
34 Costa M, Healey J A. Multiscale entropy analysis of complex heart rate dynamics: discrimination of age and heart failure effects[C]//Murray A. 30th Annual Meeting on Computers in Cardiology. Greece: Institute of Electrical and Electronics Engineers Computer Society, 2003:705-708.
35 Costa M, Goldberger A L, Peng C K. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters, 2002, 89(6): 068102.
36 Nikulin V V, Brismar T. Comment on “Multiscale entropy analysis of complex physiologic time series”[J]. Physical Review Letters, 2004, 92(8): 089803.
[1] Lei WANG, Fuyun ZHAO, Yang CAI, Weiwei WANG, Yunhe WANG, Guobiao YANG. Combined convective heat and pollutant removals in enclosures with different vented slots [J]. CIESC Journal, 2020, 71(S1): 142-148.
[2] Xinjun LI, Weiwei CHEN, Shihua LU. Coupled flow and heat transfer characteristics of piezoelectric fan with cross flow [J]. CIESC Journal, 2020, 71(S1): 149-157.
[3] Gang WANG, Yan ZHAO. Calculation and analysis of soil source heat pumps intermittent heating operation time [J]. CIESC Journal, 2020, 71(S1): 430-435.
[4] Zhenkang LIN, Yaoxuan QIAO, Wei WANG, Hong YUAN, Cheng FAN, Kening SUN. Morphology prediction of lithium plating by finite element modeling and simulations based on non-linear kinetics [J]. CIESC Journal, 2020, 71(9): 4228-4237.
[5] Yongsheng ZHANG, Liang ZHANG, Jun LI, Qian FU, Xun ZHU, Qiang LIAO, Yu SHI. Numerical simulation of performance of thermally regenerative ammonia-based battery with copper foam electrode [J]. CIESC Journal, 2020, 71(8): 3770-3779.
[6] Sheng TIAN, Jiajiang XIAO. Numerical simulation and analysis of lithium-ion battery heat pipe cooling module based on orthogonal analytic hierarchy process [J]. CIESC Journal, 2020, 71(8): 3510-3517.
[7] Fei GUO,Zhaoxiang ZHANG,Wei SONG,Xiaohong JIA. Research progress in numerical simulation of rubber vulcanization [J]. CIESC Journal, 2020, 71(8): 3393-3402.
[8] Haitao ZHU, Bo YANG, Yaqin WU, Congjie GAO. Numerical simulation of ion transfer during electrodialysis desalination process [J]. CIESC Journal, 2020, 71(8): 3518-3526.
[9] Tingfang YU, Ju GAO, Guilong XIONG, Shuiqing LI, Qiang YAO. Numerical simulation of heterogeneous nucleation of water vapor on surface of fine particles based on molecular kinetics [J]. CIESC Journal, 2020, 71(7): 3071-3079.
[10] Xuewen LIU, Jinjing LI, Xiaojun QUAN, Wei XIONG. Lattice Boltzmann study on single solid particle promoting thin liquid film rupture [J]. CIESC Journal, 2020, 71(7): 3091-3097.
[11] Shurong YU, Junhua DING, Shipeng WANG, Hong LIU, Xuexing DING, Baocai SUN. Simulation and analysis of dynamic pressure effect of gas film on cylinder seal [J]. CIESC Journal, 2020, 71(7): 3220-3228.
[12] Cheng GE, Jianjun SUN, Xuchen SU, Chenbo MA, Qiuping YU. Performance analysis on diffuser self-pumping hydrodynamic and hydrostatic mechanical seal [J]. CIESC Journal, 2020, 71(5): 2202-2214.
[13] Jinhong WANG, Zhi CHEN, Fan LIU, Jianming LI. Influence of support boundary conditions of a seal ring on deformation of mechanical seal end face [J]. CIESC Journal, 2020, 71(4): 1744-1753.
[14] Shaoxiong WANG, Yuxing LI, Cuiwei LIU, Jie LIANG, Anqi LI, Yuan XUE. Numerical simulation on leakage and diffusion characteristics of underwater gas pipeline [J]. CIESC Journal, 2020, 71(4): 1898-1911.
[15] Jian CHE, Jinbo JIANG, Jiyun LI, Xudong PENG, Yi MA, Yuming WANG. Effect of orifice exhaust mode on steady performance of hydrostatic dry gas seal [J]. CIESC Journal, 2020, 71(4): 1734-1743.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1]

ZHU Chunying;MA Youguang;ZHAO Changwei;HE Mingxia;MA Peisheng;YU Guocong(K.T.Yu)

.

Diffusion coefficients of amino acids in aqueous solutions

[J]. , 2005, 56(2): 243 -245 .
[2] Xu Zhiwei, Lu Renjie and Chen Minheng (East China Institute of Chemical Technology). Effect of Micromixing upon Selectivity of aHomogeneous Instantaneous Complex Reaction( I ) Dual-sphere Model[J]. , 1985, 36(1): 11 -19 .
[3] XU Rong, WANG Guolong, LU Xilan, LI Yangyang, ZHANG Dexiang. Hydrogenation kinetics of Shenhua coal liquefaction residue[J]. CIESC Journal, 2009, 60(11): 2749 -2754 .
[4] CHEN Guangwen, YUAN Quan. MICRO-CHEMICAL TECHNOLOGY[J]. CIESC Journal, 2003, 54(4): 427 -439 .
[5] ZHU Lifang, CAI Bangxiao, GAO Congjie, WANG Shaolei. MASS TRANSPORT ANALYSIS OF SEPARATION OF METHANOL/MTBE MIXTURES BY PERVAPORATION——DIFFUSION OF SINGLE COMPONENT IN MEMBRANE[J]. CIESC Journal, 2003, 54(2): 164 -169 .
[6] CHENG Yuangui;ZHOU Yong;ZHU Jiahua;DONG Daifeng. THERMAL CONDUCTIVITIES OF FIBROUS REFRACTORY AT HIGH TEMPERATURE WITH FRACTAL METHOD[J]. , 2002, 53(11): 1193 -1197 .
[7] Ni Li jun, Zhang Liguo,Ni Jinfang and Yuan Weikang(UNILAB Reaction Centre,East China University of Science and Technology,Shanghai 200237). STRUCTURAL KINETIC MODEL OF PYROLYSIS PROCESS OF PARAFFINS AND ITS SIMULATION[J]. , 1995, 46(5): 562 -570 .
[8] Li Chunxi;Li Yigui;Lu Jiufang(Department of chemical Engineering,Tsingua University,Beijing 100084). EQUATION OF STATE FOR PREDICTING DENSITYS OF AQUEOUS ELECTROLYTES BY PERTURBATION THEORY[J]. , 1996, 47(3): 259 -266 .
[9] JIAO Yunqiang, SU Hongye, HOU Weifeng. Flexible optimization of refinery hydrogen network[J]. CIESC Journal, 2012, 63(9): 2739 -2748 .
[10] REN Nanqi, ZHOU Xianjiao, GUO Wanqian, YANG Shanshan. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84 -94 .