CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4520-4531.doi: 10.11949/0438-1157.20200214

• Reviews and monographs • Previous Articles     Next Articles

Application of synthetic biology in manufacture of bio-based plastics

Yanqin XU1(),Xizhi YANG1,Ruoshi LUO1,Yuhong HUANG2,Feng HUO2,Dan WANG1()   

  1. 1.National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
    2.Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-03-02 Revised:2020-04-25 Online:2020-10-05 Published:2020-05-21
  • Contact: Dan WANG;


Synthetic biology is a new discipline that uses engineering ideas as a guide to transform and reconstruct natural biological genomes, synthesize new biological components, construct new metabolic routes, and produce novel products or obtain new phenotypes. Bio-based plastics are plastics produced under the action of microorganisms or the chemical reactions using natural materials as raw materials. The usage of synthetic biology to construct engineered strains to produce bio-based plastics has become a hot topic in academia and industry. This paper reviews the development of synthetic biology and important techniques in the field of synthetic biology, focusing on the research progress in the field of metabolic pathways and engineering optimization for the construction of bio-based plastic polymer monomers and derivatives such as polyhydroxyalkanoate, nylon, polylactic acid, and butylene glycol succinate using synthetic biological techniques.

Key words: synthetic biology, bio-based plastics, metabolic engineering, nylon, engineering strains

CLC Number: 

  • TK 6

Table 1

Examples of applications of engineered bacteria or engineered cells to produce bio-based plastics"

Escherichia coli丙酰辅酶A转移酶(pct)以及真养产碱杆菌的PHA合成酶等基因葡萄糖3HVPHA[29]
Escherichia coli大肠杆菌中导入固氮菌属的phaABC基因和phaP基因甘油PHBPHB[30]
Escherichia coli敲除基因消除代谢途径;过表达赖氨酸脱羧酶基因葡萄糖戊二胺尼龙5,4和尼龙5,6等[32]
Corynebacterium glutamicum大肠杆菌中的木糖异构酶基因xylA、木酮糖激酶基因xylB与赖氨酸脱羧酶基因cadA在谷氨酸棒状杆菌中共表达木糖戊二胺尼龙5,10和尼龙5,12等[33]
Corynebacterium glutamicum培养基中添加吐温40葡萄糖戊二胺尼龙5,4和尼龙5,12等[34]
Escherichia coli基因DavBDavA过表达酪氨酸5-氨基戊酸尼龙5和尼龙6,5等[35]
Escherichia coli基因LeuALeuBLeuCLeuDKivDPadA过表达酪氨酸6-氨基己酸尼龙6[36]
Escherichia coli乙酸激酶基因ackA敲除,过表达乳酸脱氢酶基因LDH葡萄糖PLAPLA[37]
Escherichia coli导入丙酮酸羧化酶基因pyc葡萄糖丁二酸PBS[38]


Applied fields of synthetic biology"


CRISPR/cas9 gene editing technology"


Application market distribution of bio-based plastics in 2017"


Regression cycle multienzyme molecular machine of 6ACA[36]"

Fig. 5

Various routes of 5AVA biosynthesis from L-lysine in microorganisms[79]"


Gene ackA knockout principle[37]"

1 Shanmugam S, Ngo H H, Wu Y R. Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: a review[J]. Renewable Energy, 2020, 149: 1107-1119.
2 Das M, Patra P, Ghosh A. Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109562.
3 Niu F X, Lu Q, Bu Y F, et al. Metabolic engineering for the microbial production of isoprenoids: carotenoids and isoprenoid-based biofuels[J]. Synthetic and Systems Biotechnology, 2017, 2(3): 167-175.
4 Jin Y S, Cate J H. Metabolic engineering of yeast for lignocellulosic biofuel production[J]. Current Opinion in Chemical Biology, 2017, 41: 99-106.
5 Jong B D, Siewers V, Nielsen J. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels[J]. Current Opinion in Biotechnology, 2012, 23(4): 624-630.
6 Wang F Z, Zhang W W. Synthetic biology: recent progress, biosafety and biosecurity concerns, and possible solutions[J]. Journal of Biosafety and Biosecurity, 2019, 1(1): 22-30.
7 Larsson C M. Biological basis for protection of the environment[J]. Annals of the ICRP, 2012, 41(3/4): 208-217.
8 Handy R D. Systems toxicology: using the systems biology approach to assess chemical pollutants in the environment[J]. Advances in Experimental Biology, 2008, 2: 249-281.
9 Wang D, Zheng Y N, Xu L N, et al. Engineered cells for selective detection and remediation of Hg2+ based on transcription factor MerR regulated cell surface displayed systems[J]. Biochemical Engineering Journal, 2019, 150: 107289.
10 Briassoulis D, Mistriotis A, Mortier N, et al. A horizontal test method for biodegradation in soil of bio-based and conventional plastics and lubricants[J]. Journal of Cleaner Production, 2020, 242: 118392.
11 Spierling S, Knüpffer E, Behnsen H, et al. Bio-based plastics—a review of environmental, social and economic impact assessments[J]. Journal of Cleaner Production, 2018, 185: 476-491.
12 Lambert S, Wagner M. Environmental performance of bio-based and biodegradable plastics: the road ahead[J]. Chemical Society Reviews, 2017, 46(22): 6855-6871.
13 Hards K, Cook G M. Targeting bacterial energetics to produce new antimicrobials[J]. Drug Resistance Updates, 2018, 36: 1-12.
14 Zhang G Q, Zhao X R, Li X L, et al. Challenges and possibilities for bio-manufacturing cultured meat[J]. Trends in Food Science & Technology, 2020, 97: 443-450.
15 Jin S, Clark B, Kuznesof S, et al. Synthetic biology applied in the agrifood sector: public perceptions, attitudes and implications for future studies[J]. Trends in Food Science & Technology, 2019, 91: 454-466.
16 Mangiagalli M, Brocca S, Orlando M, et al. The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins[J]. New Biotechnology, 2020, 55: 5-11.
17 Carrera M, Cañas B, Gallardo J M. Advanced proteomics and systems biology applied to study food allergy[J]. Current Opinion in Food Science, 2018, 22: 9-16.
18 Fish K D, Rubio N R, Stout A J, et al. Prospects and challenges for cell-cultured fat as a novel food ingredient. Prospects and challenges for cell-cultured fat as a novel food ingredient[J]. Trends in Food Science & Technology, 2020, 98: 53-67.
19 Teusink B, Molenaar D. Systems biology of lactic acid bacteria: for food and thought[J]. Current Opinion in Systems Biology, 2017, 6: 7-13.
20 Rachid B R, Ralf G B. Bio-mediated generation of food flavors — towards sustainable flavor production inspired by nature[J]. Trends in Food Science & Technology, 2018, 78: 134-143.
21 Gao Y Y, Deng C, Du Y Y, et al. A novel bio-based flame retardant for polypropylene from phytic acid[J]. Polymer Degradation and Stability, 2019, 161: 298-308.
22 Lorini L, Re F D, Majone M, et al. High rate selection of PHA accumulating mixed cultures in sequencing batch reactors with uncoupled carbon and nitrogen feeding [J]. New Biotechnology, 2020, 56: 140-148.
23 Wang X F, Bengtsson S, Oehmen A, et al. Application of dissolved oxygen (DO) level control for polyhydroxyalkanoate (PHA) accumulation with concurrent nitrification in surplus municipal activated sludge[J]. New Biotechnology, 2019, 50: 37-43.
24 Colombo B, Calvo M V, Sciarria T P. Biohydrogen and polyhydroxyalkanoates (PHA) as products of a two-steps bioprocess from deproteinized dairy wastes [J]. Waste Management, 2019, 95: 22-31.
25 Dinesh G H, Nguyen D D, Ravindran B, et al. Simultaneous biohydrogen (H2) and bioplastic (poly-β-hydroxybutyrate-PHB) productions under dark, photo, and subsequent dark and photo fermentation utilizing various wastes[J]. International Journal of Hydrogen Energy, 2020, 45(10): 5840-5853.
26 Perveen K, Masood F, Hameed A. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles[J]. International Journal of Biological Macromolecules, 2020, 144: 259-266.
27 Jung H R, Choi T R, Han Y H, et al. Production of blue-colored polyhydroxybutyrate (PHB) by one-pot production and coextraction of indigo and PHB from recombinant Escherichia coli[J]. Dyes and Pigments, 2020, 173: 107889.
28 Essabir H, Ouadi M O, Rodrigue D, et al. Biocomposites based on Argan nut shell and a polymer matrix: effect of filler content and coupling agent[J]. Carbohydrate Polymers, 2016, 143: 70-83.
29 Yang Y H, Brigham C J, Song E, et al. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a predominant amount of 3-hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase[J]. Journal of Applied Microbiology, 2012, 113(4): 815-823.
30 Bohmert-Tatarev K, Mcavoy S, Daughtry S, et al. High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate[J]. Plant Physiology, 2011, 155(4): 1690-1708.
31 De Almeida A, Giordano A, Nikel P, et al. Effects of aeration on the synthesis of poly(3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli[J]. Applied and Environmental Microbiology, 2010, 76(6): 2036-2040.
32 Qian Z G, Xia X X, Lee S Y. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine[J]. Biotechnol. Bioeng., 2011, 108(1): 93-103.
33 Buschke N, Schroderh, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose [J]. Biotechnology Journal,2011, 6(3): 306-317.
34 Matsushima Y, Hirasawa T, Shimizu H. Enhancement of 1,5-diaminopentane production in a recombinant strain of Corynebacterium glutamicum by Tween 40 addition[J]. J. Gen. Appl. Microbiol., 2016, 62(1): 42-45.
35 Adkins J, Jordan J, Nielsen D R. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate[J]. Biotechnol. Bioeng., 2013, 110(6): 1726-1734.
36 Cheng J, Hu G, Xu Y, et al. Production of nonnatural straight-chain amino acid 6-aminocaproate via an artificial iterative carbon-chain-extension cycle[J]. Metabolic Engineering, 2019, 55: 23-32.
37 时梦询. 基于工程大肠杆菌的聚乳酸生物合成途径研究[D]. 青岛: 青岛科技大学, 2018.
Shi M X. Biosynthesis of poly (lactic acid) by engineered Escherichia coli[D]. Qingdao: Qingdao University of Science and Technology, 2018.
38 Vemuri G N, Eiteman M A, Altman E. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli[J]. Appl. Environ. Microbiol., 2002, 68(4): 1715-1727.
39 Venkatachalam V, Spierling S, Horn R, et al. LCA and eco-design: consequential and attributional approaches for bio-based plastics[J]. Procedia CIRP, 2018, 69: 579-584.
40 Spierling S, Röttger C, Venkatachalam V, et al. Bio-based plastics - a building block for the circular economy[J]. Procedia CIRP, 2018, 69: 573-578.
41 Cui S Q, Borgemenke J B, Liu Z, et al. Recent advances of “soft” bio-polycarbonate plastics from carbon dioxide and renewable bio-feedstocks via straightforward and innovative routes[J]. Journal of CO2 Utilization, 2019, 34: 40-52.
42 霍鹏. 可降解塑料的研究现状及发展趋势[J]. 工程塑料应用, 2016, 44(3): 150-153.
Huo P. Research status and development trend of degradable plastics[J]. Engineering Plastics Application, 2016, 44(3): 150-153.
43 Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338.
44 Allied Market Research. World synthetic biology market opportunities and forecast, 2014—2020[EB/OL]. [2016-01-10]. .
45 National Research Council (US) Committee on a New Biology for the 21st Century: Ensuring the United States Leads the Coming Biology Revolution. A New Biology for the 21st Century: Ensuring the United States Leads the Coming Biology Revolution[M]. Washington: National Academies Press, 2009.
46 Cheng A A, Lu T K. Synthetic biology: an emerging engineering discipline[J]. Annual Review of Biomedical Engineering, 2012, 14: 155-178.
47 Slusarczyk A L, Lin A, Weiss R. Foundations for the design and implementation of synthetic genetic circuits[J]. Nature Reviews Genetics, 2012, 13(6): 406-420.
48 周益康, 吴亦楠, 王天民, 等. 代谢物生物传感器:微生物细胞工厂构建中的合成生物学工具[J]. 生物技术通报, 2017, 33(1): 1-11.
Zhou Y K. Wu Y N, Wang T M,et al. Metabolite biosensor: a useful synthetic biology tool to assist the construction of microbial cell factory[J]. Biotechnology Bulletin, 2017, 33(1): 1-11.
49 Binder S, Schendzielorz G, Stäbler N, et al. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level[J]. Genome Biology, 2012, 13(5): R40-R40.
50 刘耀, 熊莹喆, 蔡镇泽, 等. 基因编辑技术的发展与挑战[J]. 生物工程学报, 2019, 35(8): 1401-1410.
Liu Y, Xiong Y Z, Cai Z Z, et al. Development and challenges of gene editing technology[J]. Chinese Journal of Biotechnology, 2019, 35(8): 1401-1410.
51 Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering[J]. Journal of Molecular Biology, 2016, 428(5): 963-989.
52 卢俊南, 褚鑫, 潘燕平, 等. 基因编辑技术: 进展与挑战[J]. 中国科学院院刊, 2018, 33(11): 1184-1192.
Lu J N, Chu X, Pan Y P, et al. Advances and challenges in gene editing technologies[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1184-1192.
53 Ren B, Robert F, Wyrick J J, et al. Genome-wide location and function of DNA binding proteins[J]. Science, 2000, 290: 2306-2309
54 Zimmer D P, Soupene E, Lee H L, et al. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation[J]. Proc. Natl. Acad. Sci., 2000, 97(26): 14674-14679.
55 Bioplastics European. Bioplastics-facts and figures [EB/OL]. [2017-10-08]. .
56 黄险波, 王伟伟, 曾祥斌. 生物基降解塑料行业现状[J]. 生物产业技术, 2017, 6: 87-91.
Huang X B, Wang W W, Zeng X B. Status of bio-based degradable plastics industry[J]. Biotechnology & Business, 2017, 6: 87-91.
57 Gibson D G, Glass J I, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987): 52-56.
58 Martin V J J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology, 2003, 21(7): 796-802.
59 Amin M, Mardhiah A, Mohd Sauid S, et al. Polymer-starch blend biodegradable plastics: an overview[J]. Advanced Materials Research, 2015, 1113: 93-98.
60 Chen G Q, Jiang X R, Guo Y Y. Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA)[J]. Synthetic and Systems Biotechnology, 2016, 4(1): 236-242
61 Wang R Y, Shi Z Y, Chen J C, et al. Cloning large gene clusters from E. coli using in vitro single-strand overlapping annealing[J]. ACS Synthetic Biology, 2012, 1(7): 291-295.
62 Wang R Y, Shi Z Y, Chen J C, et al. Enhanced co-production of hydrogen and poly-(R)-3-hydroxybutyrate by recombinant PHB producing E. coli over-expressing hydrogenase 3 and acetyl-CoA synthetase[J]. Metabolic Engineering, 2012, 14(5): 496-503.
63 Poblete-Castro I, Binger D, Rodrigues A, et a1. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates[J]. Metab. Eng., 2013, 15: l13-123.
64 Lv L, Ren Y L, Chen J C, et a1. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis[J]. Metab. Eng., 2015, 29: 160-168.
65 Yang J E, Choi Y J, Lee S J, et al. Metabolic engineering of Escherichia coli for biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 95-104.
66 Yang Y X, Lu W H, Zhang X Y, et al. Two-step biocatalytic route to biobased functional polyesters from ω-carboxy fatty acids and diols[J]. Biomacromolecules, 2009, 11(1): 259-268.
67 Smit M S, Mokgoro M M, Setati E, et al. α, ω-Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica[J]. Biotechnology Letters, 2005, 27(12): 859-864.
68 Picataggio S, Rohrer T, Deanda K, et al. Metabolic engineering of Candida tropicalis for the production of long–chain dicarboxylic acids[J]. Bio/technology, 1992, 10(8): 894-898.
69 Craft D L, Madduri K M, Eshoo M, et al. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to α, ω-dicarboxylic acids[J]. Appl. Environ. Microbiol., 2003, 69(10): 5983-5991.
70 Picataggio S, Beardslee T. Biological methods for preparing adipic acid: US8241879[P]. 2012-8-14.
71 Beardslee T, Picataggio S. Bio-based adipic acid from renewable oils[J]. Lipid Technology, 2012, 24(10): 223-225.
72 Lin Y H, Sun X X, Yuan Q P, et al. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli[J]. Metabolic Engineering, 2014, 23: 62-69.
73 Lu J, Meng H, Meng Z, et al. Epsilon aminocaproic acid reduces blood transfusion and improves the coagulation test after pediatric open-heart surgery: a meta-analysis of 5 clinical trials[J]. International Journal of Clinical and Experimental Pathology, 2015, 8(7): 7978-7987.
74 Turk S C H J, Kloosterman W P, Ninaber D K, et al. Metabolic engineering toward sustainable production of nylon-6[J]. ACS Synthetic Biology, 2015, 5(1): 65-73.
75 Chae T U, Ko Y S, Hwang K S, et al. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams[J]. Metabolic Engineering, 2017, 41: 82-91.
76 Zhou H, Vonk B, Roubos J A, et al. Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor[J]. Nucleic Acids Research, 2015, 43(21): 10560-10570.
77 Park S J, Kim E Y, Noh W, et al. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals[J]. Metabolic Engineering, 2013, 16: 42-47.
78 Ma W, Cao W, Zhang H, et al. Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB[J]. Biotechnol. Lett., 2015, 37(4): 799-806.
79 Cheng J, Zhang Y, Huang M, et al. Enhanced 5‐aminovalerate production in Escherichia coli from L-lysine with ethanol and hydrogen peroxide addition[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12): 3492-3501.
80 Grabar T B, Zhou S, Shanmugam K T, et al. Methylglyoxal bypass identified as source of chiral contamination in L (+) and D (-)-lactate fermentations by recombinant Escherichia coli[J]. Biotechnology Letters, 2006, 28(19): 1527-1535.
81 周丽. 高产高纯D -乳酸的E. coli代谢工程菌的构建[D]. 无锡: 江南大学, 2012.
Zhou L. Construction of metabolically engineered E. coli producing high titer of pure D-lactate[D]. Wuxi: Jiangnan University, 2012.
82 Andersson C, Hodge D, Berglund K A, et al. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli[J]. Biotechnology Progress, 2007, 23(2): 381-388.
83 Liu R, Liang L, Ma J, et al. An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma[J]. Process Biochemistry, 2013, 48(11): 1603-1609.
84 Bai B, Zhou J, Yang M H, et al. Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli[J]. Bioresource Technology, 2015, 185: 56-61.
85 Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proceedings of the National Academy of Sciences, 2000, 97(12): 6640-6645.
86 Jantama K, Haupt M J, Svoronos S A, et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate[J]. Biotechnology and Bioengineering, 2008, 99(5): 1140-1153.
87 Li Y, Huang B, Wu H, et al. Production of succinate from acetate by metabolically engineered Escherichia coli[J]. ACS Synthetic Biology, 2016, 5(11): 1299-1307.
88 Huang M H, Cheng J, Chen P, et al. Efficient production of succinic acid in engineered Escherichia coli strains controlled by anaerobically-induced nirB promoter using sweet potato waste hydrolysate[J]. Journal of Environmental Management, 2019, 237: 147-154.
[1] Jing XU, Zixuan YOU, Junqi ZHANG, Zheng CHEN, Deguang WU, Feng LI, Hao SONG. Advances in engineering electroactive biofilms by synthetic biology approaches [J]. CIESC Journal, 2020, 71(9): 3950-3962.
[2] Hutao GAO, Xiaolin SHEN, Xinxiao SUN, Jia WANG, Qipeng YUAN. Metabolic engineering strategies in biosynthesis of amino acids and their derivatives [J]. CIESC Journal, 2020, 71(9): 4058-4070.
[3] Lei QIN, Jie YU, Xiaoyu NING, Wentao SUN, Chun LI. Synthetic biological system construction and green intelligent biological manufacturing [J]. CIESC Journal, 2020, 71(9): 3979-3994.
[4] Yao ZHANG, Xiaoman QIU, Chengpeng CHEN, Zhuoran YU, Housheng HONG. Recent progress in microbial production of succinic acid [J]. CIESC Journal, 2020, 71(5): 1964-1975.
[5] Nuonan LI, Chun LI. Applications of glycosyltransferases in synthesis of triterpenoid saponins [J]. CIESC Journal, 2019, 70(10): 3869-3879.
[6] Tianhua CHEN, Ruosi ZHANG, Guozhen JIANG, Mingdong YAO, Hong LIU, Ying WANG, Wenhai XIAO, Yingjin YUAN. Metabolic engineering of Saccharomyces cerevisiae for pinene production [J]. CIESC Journal, 2019, 70(1): 179-188.
[7] Chen CHEN, Ying WANG, Hong LIU, Yan CHEN, Mingdong YAO, Wenhai XIAO. Exploring the key structural properties affecting the function of multi-step phytoene dehydrogenase CrtI [J]. CIESC Journal, 2019, 70(1): 189-198.
[8] WU Yaokang, LIU Yanfeng, LI Jianghua, DU Guocheng, LIU Long, CHEN Jian. Dynamic regulation elements and their applications in microbial metabolic engineering [J]. CIESC Journal, 2018, 69(1): 272-281.
[9] TONG Yingjia, WU Wenjia, PENG Hui, LIU Lugang, HUANG He, JI Xiaojun. Metabolic engineering for efficient microbial production of 2,3-butanediol [J]. CIESC Journal, 2016, 67(7): 2656-2671.
[10] XIAO Bing, LI Jun, LI Chun. Synergistically enhanced thermostability of Saccharomyces cerevisiaeby ubiquitin-like protein mediation and heat shock response [J]. CIESC Journal, 2016, 67(6): 2503-2509.
[11] GU Xueping, TIAN Lulu, FENG Lianfang, ZHANG Cailiang. Thermodynamic modeling with new UNIFAC groups for solubility of nylon66-salt in water system [J]. CIESC Journal, 2016, 67(2): 435-441.
[12] YUAN Haibo, LI Jianghua, LIU Long, DU Guocheng, CHEN Jian. Advances in production of important platform chemicals by bio-manufacturing based on systems biology and synthetic biology [J]. CIESC Journal, 2016, 67(1): 129-139.
[13] ZHAI Fang, SONG Tianqing, XIAO Wenhai, DING Mingzhu, QIAO Jianjun, YUAN Yingjin. Combinatorial design and construction of artificial yeast for production of taxadien-5α-ol [J]. CIESC Journal, 2016, 67(1): 315-323.
[14] XIAO Wenhai, WANG Ying, YUAN Yingjin. Core technology in chemicals green manufacturing: synthetic biology [J]. CIESC Journal, 2016, 67(1): 119-128.
[15] ZHU Ming, WANG Caixia, LI Chun. Engineered Saccharomyces cerevisiae for biosynthesis of plant triterpenoids [J]. CIESC Journal, 2015, 66(9): 3350-3356.
Full text



[1] GAN Yunhua, YANG Zeliang. Effect of axial heat conduction on heat transfer in micro-channels[J]. CIESC Journal, 2008, 59(10): 2436 -2441 .

DONG Binbin;SHEN Changyu;LI Qian


Affecting factors of shrinkage and warpage of thin-wall injection molding process

[J]. , 2005, 56(4): 727 -731 .
[3] CHEN Guangwen, YUAN Quan. MICRO-CHEMICAL TECHNOLOGY[J]. CIESC Journal, 2003, 54(4): 427 -439 .
[4] . [J]. CIESC Journal, 2011, 62(6): 1693 -1700 .
[6] REN Nanqi, ZHOU Xianjiao, GUO Wanqian, YANG Shanshan. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84 -94 .
[7] ZHOU Wenjun, SONG Jian, CHEN Youcai, WANG Xueqin, ZHANG Jingli. Synthesis of polyborosiloxane flame retardant and its application to polycarbonate[J]. CIESC Journal, 2012, 63(10): 3365 -3371 .
[8] LI Jing, ZENG Cheng, LIU Yeming, ZHANG Ding. Numerical simulation of spray cooling for extruded plastic pipe[J]. CIESC Journal, 2014, 65(6): 2056 -2062 .
[9] LUO Qin, ZHAO Yinfeng, YE Mao, LIU Zhongmin. Application of electrical capacitance tomography for gas-solid fluidized bed measurement[J]. CIESC Journal, 2014, 65(7): 2504 -2512 .
[10] CHEN Lei, CHEN Hanping, LU Qiang, SONG Yang, DING Xuejie, WANG Xianhua, YANG Haiping. Characterization of structure and pyrolysis behavior of lignin[J]. CIESC Journal, 2014, 65(9): 3626 -3633 .