CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4473-4490.doi: 10.11949/0438-1157.20191596

• Reviews and monographs • Previous Articles     Next Articles

Research on synthesis and application of metal-organic frame composites in supercapacitors

Yanqin XU(),Liyue XIAO(),Yuan CAO(),Changguo CHEN,Dan WANG   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2019-12-30 Revised:2020-04-15 Online:2020-10-05 Published:2020-05-08
  • Contact: Yuan CAO E-mail:xuyanqin666@163.com;1300448269@qq.com;caoyuan@cqu.edu.cn

Abstract:

Electrode material is a key component of supercapacitors (SCs). As a porous material, metal-organic frameworks (MOFs) have attracted much attention in the field of SCs electrode materials due to their high specific surface area, controllable structure, and adjustable pore size. The low conductivity and stability of MOFs are still the main challenges in practical applications. MOF composite materials are a type of composite materials composed of MOFs and one or more different materials. They can effectively combine the advantages of MOFs with the advantages of other functional materials, such as excellent electrical conductivity and unique electrochemical properties. Therefore, MOF composite materials can achieve high reversible capacity and excellent cycle performance, overcome the shortcomings of MOFs materials, and have broad application prospects in the field of SCs electrode materials. According to the dimensional classification of the materials combined with MOFs, they can be divided into four types of composite materials: 0D, 1D, 2D, and 3D MOFs. The composition and synthesis methods of these four types of composite materials are reviewed. The application of MOF composite materials in the field of SCs is systematically introduced. Furthermore, its development prospects are prospected.

Key words: metal-organic frameworks, composite material, supercapacitor, electrode capacitan

CLC Number: 

  • TQ 152
1 Salunkhe R R, Kaneti Y V, Kim J, et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications[J]. Accounts of Chemical Research, 2016, 49(12): 2796-2806.
2 Sundaram M M, Mitchell D R G. Dispersion of Ni2+ ions via acetate precursor in the preparation of NaNiPO4 nanoparticles: effect of acetate vs. nitrate on the capacitive energy storage properties[J]. Dalton Transactions, 2017, 46(40): 13704-13713.
3 Wu Z S, Ren W, Wang D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors[J]. ACS Nano, 2010, 4(10): 5835-5842.
4 Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexible supercapacitors[J]. Chemical Society Reviews, 2014, 43(10): 3303-3323.
5 Lopes J A P, Soares F J, Almeida P M R. Integration of electric vehicles in the electric power system[J]. Proceedings of the IEEE, 2010, 99(1): 168-183.
6 Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Mater., 2008, 7: 845-859.
7 Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
8 Wang D G, Wang H, Song M, et al. Bodipy‐based carbonaceous materials for high performance electrical capacitive energy storage[J]. Chemistry—an Asian Journal, 2018, 13(20): 3051-3056.
9 Wang D G, Wang H, Lin Y, et al. Synthesis and morphology evolution of ultrahigh content nitrogen‐doped, micropore‐dominated carbon materials as high‐performance supercapacitors[J]. ChemSusChem, 2018, 11(22): 3932-3940.
10 Mosa I M, Pattammattel A, Kadimisetty K, et al. Ultrathin graphene-protein supercapacitors for miniaturized bioelectronics[J]. Advanced Energy Materials, 2017, 7(17): 1700358.
11 Pu X, Li L, Liu M, et al. Wearable self‐charging power textile based on flexible yarn supercapacitors and fabric nanogenerators[J]. Advanced Materials, 2016, 28(1): 98-105.
12 Fan F R, Tang W, Wang Z L. Flexible nanogenerators for energy harvesting and self‐powered electronics[J]. Advanced Materials, 2016, 28(22): 4283-4305.
13 Son D, Lee J, Qiao S, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders[J]. Nature Nanotechnology, 2014, 9(5): 397.
14 Dubal D P, Chodankar N R, Kim D H, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Reviews, 2018, 47(6): 2065-2129.
15 Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950.
16 Tang Y, Liu Z, Guo W, et al. Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor[J]. Electrochimica Acta, 2016, 190: 118-125.
17 Raza W, Ali F, Raza N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52: 441-473.
18 Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4): 1300816.
19 Amali A J, Sun J K, Xu Q. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage[J]. Chemical Communications, 2014, 50(13): 1519-1522.
20 Chen B, Eddaoudi M, Hyde S, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001, 291: 1021-1023.
21 Zhou L, Wang Y, Zhou C, et al. From hydrogen-bonded net-to-net framework to twofold interpenetrated (4, 6) net: effect of ligand topology on the supramolecular structural diversity[J]. Cryst. Growth Des., 2007, 7: 300-306.
22 Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. J. Am. Chem. Soc., 2005, 127: 17998-17999.
23 Morozan A, Jaouen F. Metal organic frameworks for electrochemical applications[J]. Energy Environ. Sci., 2012, 5:9269-9290.
24 Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935.
25 Ding M, Cai X, Jiang H. Improving MOF stability: approaches and applications[J]. Chemical Science, 2019, 10(44): 10209-10230.
26 Xue Y, Zheng S, Xue H, et al. Metal-organic framework composites and their electrochemical applications[J]. Journal of Materials Chemistry A, 2019, 7(13): 7301-7327.
27 Díaz R, Orcajo M G, Botas J A, et al. Co8-MOF-5 as electrode for supercapacitors[J]. Mater. Lett., 2012, 68: 126-128.
28 Chen Y J, Wang N, Hu W C, et al. In situ construction of porous Ni/Co-MOF@Carbon cloth electrode with honeycomb-like structure for high-performance energy storage[J]. J. Porous Mat., 2019, 26: 921-929.
29 Gao Y, Wu J, Zhang W, et al. The electrochemical performance of SnO2 quantum dots@ zeolitic imidazolate frameworks-8 (ZIF-8) composite material for supercapacitors[J]. Materials Letters, 2014, 128: 208-211.
30 Yang J, Xiong P, Zheng C, et al. Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode[J]. J. Mater. Chem. A, 2014, 2: 16640-16644.
31 Yang J, Zheng C, Xiong P, et al. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. J. Mater. Chem. A, 2014, 2: 19005-19010.
32 Gong Y, Li J, Jiang P G, et al. Novel metal (Ⅱ) coordination polymers based on N,N′-bis-(4-pyridyl) phthalamide as supercapacitor electrode materials in an aqueous electrolyte[J]. Dalton Trans., 2013, 42: 1603-1611.
33 Du W, Bai Y L, Xu J, et al. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors[J]. Journal of Power Sources, 2018, 402: 281-295.
34 Muzaffar A, Ahamed M B, Deshmukh K, et al. A review on recent advances in hybrid supercapacitors: design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 123-145.
35 Wei T, Zhang M, Wu P, et al. POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage[J]. Nano Energy, 2017, 34: 205-214.
36 Guo S N, Zhu Y, Yan Y Y, et al. (Metal-organic framework)-polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor[J]. Journal of Power Sources, 2016, 316: 176-182
37 Choi K M, Jeong H M, Park J H, et al. Supercapacitors of nanocrystalline metal-organic frameworks[J]. ACS Nano, 2014, 8(7): 7451-7457.
38 Aguilera-Sigalat J, Bradshaw D. Synthesis and applications of metal-organic framework-quantum dot (QD@ MOF) composites[J]. Coordination Chemistry Reviews, 2016, 307: 267-291.
39 Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels[J]. Nature Methods, 2008, 5(9): 763.
40 Zhang S, Liu H, Sun C, et al. CuO/Cu2O porous composites: shape and composition controllable fabrication inherited from metal organic frameworks and further application in CO oxidation[J]. Journal of Materials Chemistry A, 2015, 3(10): 5294-5298.
41 Aijaz A, Karkamkar A, Choi Y J, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach[J]. Journal of the American Chemical Society, 2012, 134(34): 13926-13929.
42 Railey P, Song Y, Liu T, et al. Metal organic frameworks with immobilized nanoparticles: synthesis and applications in photocatalytic hydrogen generation and energy storage[J]. Materials Research Bulletin, 2017, 96: 385-394.
43 Xu Y, Zheng S, Tang H, et al. Prussian blue and its derivatives as electrode materials for electrochemical energy storage[J]. Energy Storage Materials, 2017, 9: 11-30.
44 Vayssieres L. On the design of advanced metal oxide nanomaterials[J]. International Journal of Nanotechnology, 2004, 1(1/2): 1-41.
45 Xiao X, Li X, Zheng S, et al. Nanostructured germanium anode materials for advanced rechargeable batteries[J]. Advanced Materials Interfaces, 2017, 4(6): 1600798.
46 Deng M, Bo X, Guo L. Encapsulation of platinum nanoparticles into a series of zirconium-based metal-organic frameworks: effect of the carrier structures on electrocatalytic performances of composites[J]. Journal of Electroanalytical Chemistry, 2018, 815: 198-209.
47 Imperor-Clerc M, Bazin D, Appay M D, et al. Crystallization of β-MnO2 nanowires in the pores of SBA-15 silicas: in situ investigation using synchrotron radiation[J]. Chemistry of materials, 2004, 16(9): 1813-1821.
48 Pang H, Zhang Y, Cheng T, et al. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors[J]. Nanoscale, 2015, 7(38): 16012-16019.
49 Liu H, Liu Y, Li Y, et al. Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols[J]. The Journal of Physical Chemistry C, 2010, 114(31): 13362-13369.
50 Zheng S, Li B, Tang Y, et al. Ultrathin nanosheet-assembled [Ni3(OH)2(PTA)2(H2O)4]·2H2O hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions[J]. Nanoscale, 2018, 10(27): 13270-13276.
51 Chen L, Chen H, Li Y. One-pot synthesis of Pd@ MOF composites without the addition of stabilizing agents[J]. Chemical Communications, 2014, 50(94): 14752-14755.
52 Zeng T, Zhang X, Wang S, et al. Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants[J]. Environmental Science & Technology, 2015, 49(4): 2350-2357.
53 Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005, 307(5709): 538-544.
54 Alivisatos P. The use of nanocrystals in biological detection[J]. Nature Biotechnology, 2004, 22(1): 47.
55 Somers R C, Bawendi M G, Nocera D G. CdSe nanocrystal based chem-/bio-sensors[J]. Chemical Society Reviews, 2007, 36(4): 579-591.
56 Chen F, Gerion D. Fluorescent CdSe/ZnS nanocrystal- peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells[J]. Nano Letters, 2004, 4(10): 1827-1832.
57 Xu C, Mochizuki D, Hashimoto Y, et al. Luminescence of ortho‐metalated iridium complexes encapsulated in zeolite supercages by the ship‐in‐a‐bottle method[J]. European Journal of Inorganic Chemistry, 2012, (19): 3113-3120.
58 Yu Y, Mai J, Wang L, et al. Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in NaY zeolite for CO2 capture[J]. Scientific Reports, 2014, 4: 5997.
59 Urrego S, Serra E, Alfredsson V, et al. Bottle-around-the-ship: a method to encapsulate enzymes in ordered mesoporous materials[J]. Microporous and Mesoporous Materials, 2010, 129(1/2): 173-178.
60 Aguilera-Sigalat J, Bradshaw D. Synthesis and applications of metal-organic framework-quantum dot (QD@ MOF) composites[J]. Coordination Chemistry Reviews, 2016, 307: 267-291.
61 Turner S, Lebedev O I, Schröder F, et al. Direct imaging of loaded metal-organic framework materials (Metal@ MOF-5)[J]. Chemistry of Materials, 2008, 20(17): 5622-5627.
62 Lu G, Li S, Guo Z, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J]. Nature Chemistry, 2012, 4(4): 310.
63 Kaur R, Paul A K, Deep A. Nanocomposite of europium organic framework and quantum dots for highly sensitive chemosensing of trinitrotoluene[J]. Forensic Science International, 2014, 242: 88-93.
64 Lin X, Gao G, Zheng L, et al. Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing[J]. Analytical Chemistry, 2013, 86(2): 1223-1228.
65 Falcaro P, Hill A J, Nairn K M, et al. A new method to position and functionalize metal-organic framework crystals[J]. Nature Communications, 2011, 2: 237.
66 Jeong E, Lee W R, Ryu D W, et al. Reversible structural transformation and selective gas adsorption in a unique aqua-bridged Mn (Ⅱ) metal-organic framework[J]. Chemical Communications, 2013, 49(23): 2329-2331.
67 Xu M W, Bao S J, Li H L. Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor[J].Journal of Solid State Electrochemistry, 2007, 11(3): 372-377.
68 Falcaro P, Ricco R, Doherty C M, et al. MOF positioning technology and device fabrication[J]. Chemical Society Reviews, 2014, 43(16): 5513-5560.
69 Zhan W, Kuang Q, Zhou J, et al. Semiconductor@ metal-organic framework core-shell heterostructures: a case of ZnO@ ZIF-8 nanorods with selective photoelectrochemical response[J]. Journal of the American Chemical Society, 2013, 135(5): 1926-1933.
70 Wang L, Feng X, Ren L, et al. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J]. Journal of the American Chemical Society, 2015, 137(15): 4920-4923.
71 Zheng S, Li X, Yan B, et al. Transition‐metal (Fe, Co, Ni) based metal‐organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials, 2017, 7(18): 1602733.
72 Yang X, Jiang X, Huang Y, et al. Building nanoporous metal-organic frameworks “armor” on fibers for high-performance composite materials[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5590-5599.
73 Yu B, Wang F, Dong W, et al. Self-template synthesis of core-shell ZnO@ ZIF-8 nanospheres and the photocatalysis under UV irradiation[J]. Materials Letters, 2015, 156: 50-53.
74 Huang T Y, Kung C W, Liao Y T, et al. Enhanced charge collection in MOF‐525-PEDOT nanotube composites enable highly sensitive biosensing[J]. Advanced Science, 2017, 4(11): 1700261.
75 Zhang Y, Lin B, Sun Y, et al. Carbon nanotubes@ metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage[J]. RSC Advances, 2015, 5(72): 58100-58106.
76 Zhou H, Zhang J, Zhang J, et al. Spillover enhanced hydrogen storage in Pt-doped MOF/graphene oxide composite produced via an impregnation method[J]. Inorganic Chemistry Communications, 2015, 54: 54-56.
77 Zhou Y, Mao Z, Wang W, et al. In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni-MOFs@ GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28904-28916.
78 Jin Y, Zhao C, Sun Z, et al. Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries[J]. RSC Advances, 2016, 6(36): 30763-30768.
79 Zhang W, Tan Y, Gao Y, et al. Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications[J]. Journal of Applied Electrochemistry, 2016, 46(4): 441-450.
80 Tsuruoka T, Furukawa S, Takashima Y, et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth[J]. Angewadte Chemie International Edition, 2009, 48(26): 4739-4743.
81 Kuo C H, Tang Y, Chou L Y, et al. Yolk-shell nanocrystal@ ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J]. Journal of the American Chemical Society, 2012, 134(35): 14345-14348.
82 Wang Z, Wang B, Yang Y, et al. Mixed-metal-organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20999-21004.
83 Choi K M, Kim D, Rungtaweevoranit B, et al. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light[J]. Journal of the American Chemical Society, 2016, 139(1): 356-362.
84 Deng Y, Deng C, Qi D, et al. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin[J]. Advanced Materials, 2009, 21(13): 1377-1382.
85 Zhang N, Zhu B, Peng F, et al. Synthesis of metal-organic-framework related core-shell heterostructures and their application to ion enrichment in aqueous conditions[J]. Chemical Communications, 2014, 50(57): 7686-7689.
86 Chen Y, Xiong Z, Peng L, et al. Facile preparation of core-shell magnetic metal-organic framework nanoparticles for the selective capture of phosphopeptides[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16338-16347.
87 Shekhah O, Wang H, Kowarik S, et al. Step-by-step route for the synthesis of metal- organic frameworks[J]. Journal of the American Chemical Society, 2007, 129(49): 15118-15119.
88 Shekhah O, Wang H, Zacher D, et al. Growth mechanism of metal-organic frameworks: insights into the nucleation by employing a step‐by‐step route[J]. Angewandte Chemie International Edition, 2009, 48(27): 5038-5041.
89 Chen X, Ding N, Zang H, et al. Fe3O4@ MOF core-shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples[J]. Journal of Chromatography A, 2013, 1304: 241-245.
90 Ke F, Qiu L G, Yuan Y P, et al. Fe3O4@ MOF core-shell magnetic microspheres with a designable metal-organic framework shell[J]. Journal of Materials Chemistry, 2012, 22(19): 9497-9500.
91 Wu Y, Liu Q, Xie Y, et al. Core-shell structured magnetic metal-organic framework composites for highly selective enrichment of endogenous N-linked glycopeptides and phosphopeptides[J]. Talanta, 2018, 190: 298-312.
92 Lee H J, Cho W, Oh M. Advanced fabrication of metal-organic frameworks: template-directed formation of polystyrene@ ZIF-8 core-shell and hollow ZIF-8 microspheres[J]. Chemical Communications, 2012, 48(2): 221-223.
93 Kuo C H, Tang Y, Chou L Y, et al. Yolk-shell nanocrystal@ ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J]. Journal of the American Chemical Society, 2012, 134(35): 14345-14348..
94 Li F, Song J, Yang H, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors[J]. Nanotechnology, 2009, 20(45): 455602.
95 Mao Y, Li G, Guo Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J]. Nature Communications, 2017, 8: 14628.
96 Yang S J, Choi J Y, Chae H K, et al. Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@ MOF-5 hybrid composite[J]. Chemistry of Materials, 2009, 21(9): 1893-1897.
97 Sohrabi S, Dehghanpour S, Ghalkhani M. A cobalt porphyrin-based metal organic framework/multi-walled carbon nanotube composite electrocatalyst for oxygen reduction and evolution reactions[J]. Journal of Materials Science, 2018, 53(5): 3624-3639.
98 Kumar P, Vellingiri K, Kim K H, et al. Modern progress in metal-
organic frameworks and their composites for diverse applications[J]. Microporous and Mesoporous Materials, 2017, 253: 251-265.
99 Zheng S F, Hu J S, Zhong L S, et al. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries[J]. Chemistry of Materials, 2008, 20(11): 3617-3622.
100 Wen P, Gong P, Sun J, et al. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density[J]. Journal of Materials Chemistry A, 2015, 3(26): 13874-13883.
101 Zhao S H, Wu H H, Li Y L, et al. Core-shell assembly of carbon nanofiber and a 2D conductive metal-organic framework as a flexible free-standing membrane for high-performance supercapacitors[J]. Inorganic Chemistry Frontiers, 2019, 6: 1824-1830.
102 Hong J, Park S J, Kim S. Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes[J]. Electrochimica Acta, 2019, 311: 62-71.
103 Li Z, Tan Y, Zhang W, et al. Flower-like Ni3(NO3)2(OH)4@ Zr-metal organic framework (UiO-66) composites as electrode materials for high performance pseudocapacitors[J]. Ionics, 2016, 22(12): 2545-2551.
104 Zhang S, Li X, Ding B, et al. A novel spitball-like Co3(NO3)2(OH)4@ Zr-MOF@ RGO anode material for sodium-ion storage[J]. Journal of Alloys and Compounds, 2020, 822: 153624.
[1] Puxu LIU, Chaohui HE, Libo LI, Jinping LI. Stable mixed metal-organic framework for efficient C2H6/C2H4 separation [J]. CIESC Journal, 2020, 71(9): 4211-4218.
[2] Feng ZHOU, Lijun TIAN, Lei GAO, Zhongshuai WU. Few-layer graphene via electrochemically cathodic exfoliation for micro-supercapacitors [J]. CIESC Journal, 2020, 71(6): 2724-2734.
[3] Shuang ZONG, Xinying LIU, Aibing CHEN. Metal-organic frameworks-derived zero-dimensional materials for supercapacitors [J]. CIESC Journal, 2020, 71(6): 2612-2627.
[4] Lianghan LI, Xianlong JIAN, Sen ZHANG, Ming ZHANG, Yuping SUN, Xinchang WANG. Preparation and energy storage properties of flexible and self-supporting CNT/Si composite films [J]. CIESC Journal, 2020, 71(6): 2804-2810.
[5] Le YANG, Jinhe YU, Rong FU, Yuanyang XIE, Chang YU, Jieshan QIU. Research progress of solvent-in-salt electrolyte for supercapacitor [J]. CIESC Journal, 2020, 71(6): 2457-2465.
[6] Xiaoqian XU, Junxia CHENG, Yaming ZHU, Lijuan GAO, Shiquan LAI, Xuefei ZHAO. Electrochemical properties of supercapacitor electrode materials made from needle coke [J]. CIESC Journal, 2020, 71(6): 2830-2839.
[7] Tong YANG, Xiaobo HE, Fengxiang YIN. Preparation of M-MOF-74 (M = Ni, Co, Zn) and its performance in electrocatalytic synthesis of ammonia [J]. CIESC Journal, 2020, 71(6): 2857-2870.
[8] Shaofei ZHAO, Peng LIU, Wanping LI, Xiaohong ZENG, Yuanhong ZHONG, Lin YU, Huaqiang ZENG. One-step electrodeposition and pseudocapacitance properties of 3D Ni3S2 supported on Ni foam [J]. CIESC Journal, 2020, 71(4): 1836-1843.
[9] Zepei YU, Yanhui FENG, Daili FENG, Xinxin ZHANG. Thermal conductivity of three dimensional graphene-carbon nanotubes hybrid structure: molecular dynamics simulation [J]. CIESC Journal, 2020, 71(4): 1822-1827.
[10] Ye YUAN, Ming WANG, Yunqi ZHOU, Zhi WANG, Jixiao WANG. Progress in pore size regulation of metal-organic frameworks [J]. CIESC Journal, 2020, 71(2): 429-450.
[11] Le ZHOU, Binqi WANG, Yi NIE. Research status and development trend of artificial antibacterial fibers [J]. CIESC Journal, 2020, 71(10): 4395-4408.
[12] Bingbing HU, Shu YANG, Yan LI, Chuanlan XU, Peng CHEN, Jingjing YU, Danmei YU, Changguo CHEN. Construction of free binder V2O5 and Fe2O3 flexible electrode and its application in supercapacitor [J]. CIESC Journal, 2020, 71(10): 4836-4846.
[13] Miao CHANG, Lei LIU, Qingyuan YANG, Dahuan LIU, Chongli ZHONG. Study on efficient separation of SF6/N2 mixture using a hydrothermally stable metal-organic framework [J]. CIESC Journal, 2020, 71(1): 320-328.
[14] Yingying LI, Qianqian DENG, Hao LIU, Qichun LIU, Zhenggui GU, Fang WANG. Microstructure characterization and thermal stability of new silk fibroin composite films [J]. CIESC Journal, 2020, 71(1): 388-396.
[15] Jie XU, Xin CHEN, Lingling WANG. An environmentally friendly activated carbon supercapacitor electrode material preparation with expired sliced bread [J]. CIESC Journal, 2019, 70(9): 3582-3589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xiaohua, OUYANG Jie, KONG Qian. Micro-macro simulation of polymeric fluid flow[J]. CIESC Journal, 2007, 58(8): 1897 -1904 .
[2] Zhuang Zhenwan Research Institute of Chemical Machinery, Ministry of Chemical Industry. The Residence Time Distribution For Complex Flow System[J]. , 1983, 34(4): 335 -342 .
[3] SUN Lujuan, YANG Linjun, ZHANG Xia, YAN Jinpei, ZHANG Yu, SHEN Xianglin. Removal of fine particles from combustion by condensation scrubbing[J]. CIESC Journal, 2008, 59(6): 1508 -1514 .
[4] Tian Yongguang (Second Pesticide Factory, Lianyungang). A Two-Parameter Cubic Equation of State[J]. , 1987, 38(1): 93 -98 .
[5] XIE Yingbai;LIU Yingfu;TANG Jiancheng;SUN Ganglei.

Trans-critical throttling cycle of CO2 in two-stage compression with complete inter-cooling

[J]. , 2010, 61(3): 551 -556 .
[6] LIU Yongzhi, ZHAO Zhenfeng, SHEN Changyu. 3D numerical simulation based on operator splitting method for temperature of plastic injection molding in filling stage[J]. CIESC Journal, 2011, 62(5): 1455 -1459 .
[7] DING Hao;JI Xiaoyan;QIN Jianhua;LU Xiaohua;YAN Jinyue. PREDICTION OF SATURATED HUMIDITY AND ENTHALPY OF HUMID AIR AT HIGH TEMPERATURE AND PRESSURE [J]. , 2002, 53(8): 879 -882 .
[8] <LI Jian, XU Chuanlong, WANG Shimin. Local particle mean velocity measurement using electrostatic sensor matrix[J]. , 2011, 62(12): 3337 -3344 .
[9] Guo Xiaofen ,Yang Xuelian and Chen Yong Xie Kechang (Guangzhou Institute of Energy Conversion, ( Institute of Coal Chemistry, Taiyuan Chinese Academy of Science, Guangzhou?510070) University of T. PYROLYTIC KINETICS OF COMBUSTIBLE OF MSW[J]. , 2000, 51(5): 615 -619 .
[10] GUO Changyou,SHEN Zhiqi,ZHANG Zhimin. Research progress of TiO2?Al2O3 composite support[J]. , 2011, 30(7): 1482 .