CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4502-4519.doi: 10.11949/0438-1157.20191305

• Reviews and monographs • Previous Articles     Next Articles

Progress of superhydrophobic porous materials

Li CHEN(),Cailong ZHOU(),Jingcheng DU,Wei ZHOU,Luxi TAN,Lichun DONG   

  1. School of Chemistry and Chemical Engineering, National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing 400044, China
  • Received:2019-11-01 Revised:2019-12-24 Online:2020-10-05 Published:2019-12-27
  • Contact: Cailong ZHOU;


Porous materials such as metal organic framework materials (MOFs), covalent organic framework materials (COFs), organic porous polymers (POPs), etc., have been used widely used in the fields of separation, catalysis, gas storage and drug release due to their diversity, designability, controllability and functionalization of pores. Despite these promising applications, some of the porous materials suffer from moisture-sensitivity and instability in aqueous media due to their inherent structural features. To overcome this problem, endowing them with hydrophobicity is an effective strategy. However, designing superhydrophobic porous materials has certain challenges. In this work, the progress of MOFs, COFs and POPs with (super-)hydrophobic property is introduced. Issues related to their design strategy, structures, and practical applications such as catalysis, oil/water separation and gas storage and separation were analyzed. Additionally, the current problems and the future research directions of the hydrophobic porous materials were discussed.

Key words: superhydrophobicity, porous materials, catalysis, absorption, separation

CLC Number: 

  • TB 383
1 Slater A G, Cooper A I. Function-led design of new porous materials[J]. Science, 2015, 348: aaa8075.
2 崔希利, 邢华斌. 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报, 2018, 69(6): 2339-2352.
Cui X L, Xing H B. Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal, 2018, 69(6): 2339-2352.
3 Cooper A I. Conjugated microporous polymers[J]. Adv. Mater., 2009, 21(12): 1291-1295.
4 Luo Y, Li B, Wang W, et al. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials[J]. Adv. Mater., 2012, 24(42): 5703-5707.
5 Du N, Park H B, Dal-Cin M M, et al. Advances in high permeability polymeric membrane materials for CO2 separations[J]. Energ. Environ. Sci., 2012, 5(6): 7306-7322.
6 Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310: 1166-1170.
7 Fan H, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. J. Am. Chem. Soc., 2018, 140: 10094-10098.
8 Jiang Y, Liu C, Li Y, et al. Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation[J]. J. Membr. Sci., 2019, 587: 117177.
9 Fang Q, Wang J, Gu S, et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. J. Am. Chem. Soc., 2015, 137(26): 8352-8355.
10 Xu H S, Ding S Y, An W K, et al. Constructing crystalline covalent organic frameworks from chiral building blocks[J]. J. Am. Chem. Soc., 2016, 138(36): 11489-11492.
11 Xu F, Yang S, Jiang G, et al. Fluorinated, sulfur-rich, covalent triazine frameworks for enhanced confinement of polysulfides in lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(3): 37731-37738.
12 Park K S, Ni Z, Cote A P, et al. From the cover: exceptional chemical and thermal stability of zeolitic imidazolate framework[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(27): 10186-10191.
13 Moghadam P Z, Ivy J F, Arvapally R K, et al. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation[J]. Chem. Sci., 2017, 8(5): 3989-4000.
14 曾新娟, 王丽, 皮丕辉,等. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30: 73-86.
Zeng X J, Wang L, Pi P H, et al. Development and research of special wettability materials for oil/water separation[J]. Progress in Chemistry, 2018, 30: 73-86.
15 Young T. An essay on the cohesion of fluids[J]. Phil. Trans. R. Soc., 1805, 95: 65-87.
16 Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28(8): 988-994.
17 Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40(1): 546-551.
18 Wang S T, Jiang L. Definition of superhydrophobic states[J]. Adv. Mater., 2007, 19(21): 3423-3424.
19 Mehran G, Fugen D, Elena P I, et al. Bio-inspired sustainable and durable superhydrophobic materials: from nature to market[J]. J. Mater. Chem. A, 2019, 7: 16643-16670.
20 Darmanin T, Givenchy E T, Amigoni S, et al. Superhydrophobic surfaces by electrochemical processes[J]. Adv. Mater., 2013, 25: 1378-1394.
21 Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.
22 Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: an inspiration for biomimetics[J]. Prog. Mater. Sci., 2009, 54(2): 137-178.
23 Si Y F, Guo Z G. Superhydrophobic nanocoatings: from materials to fabrications and to applications[J]. Nanoscale, 2015, 7: 5922-5946.
24 Shin S, Seo J, Han H, et al. Bio-inspired extreme wetting surfaces for biomedical applications[J]. Materials, 2016, 9(2): 116.
25 Tsutomu M. Advanced sol-gel coatings for practical applications[J]. J. Sol-Gel Sci. Technol., 2013, 65: 4-11.
26 Vazirinasab E, Jafari R, Momen G. Application of superhydrophobic coatings as a corrosion barrier: a review[J]. Surf. Coat. Technol., 2018, 341(15): 40-56.
27 Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: from structural control to functional application[J]. J. Mater. Chem., 2008, 18(6): 621-633.
28 Li L X, Li B C, Dong J, et al. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials[J]. J. Mater. Chem. A, 2016, 4(36): 13677-13725.
29 Tian Y, Su B, Jiang L, et al. Interfacial material system exhibiting superwettability[J]. Adv. Mater., 2014, 26: 6872-6897.
30 Chu Z L, Feng Y J, Seeger S F. Oil/water separation with selective superantiwetting/superwetting surface materials[J]. Angew. Chem. Int. Ed., 2015, 54(8): 2328-2338.
31 刘光启, 马连湘, 刘杰. 化学化工物性数据手册(有机卷)[M]. 北京: 化学工业出版社, 2001.
Liu G Q, Ma L X, Liu J. Chemical and Chemical Physical Property Data Book [M]. Beijing: Chemical Industry Press, 2001.
32 Brown P S, Bhushan B. Designing bioinspired superoleophobic surfaces[J]. APL Mater., 2016, 4(1): 015703.
33 Milionis A, Bayer I S, Loth E. Recent advances in oil-repellent surfaces[J]. Int. Mater. Rev., 2016, 61(2): 101-126
34 Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15(13): 4321-4323.
35 Yang C, Wang X P, Omary M A. Fluorous metal-organic frameworks for high-density gas adsorption[J]. J. Am. Chem. Soc., 2007, 129(50): 15454-15455.
36 Yang C, Kaipa U, Zhang Q, et al. Mather fluorous metal organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage[J]. J. Am. Chem. Soc., 2011, 133(45): 18094-18097.
37 Jiang Z R, Ge J, Zhou Y X, et al. Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water[J]. NPG Asia Mater., 2016, 8: e253.
38 Padial N M, Procopio E Q, Montoro C, et al. Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds[J]. Angew. Chem. Int. Ed., 2013, 52: 8290-8294.
39 Mukherjee S, Kansara A M, Saha D, et al. An ultrahydrophobic fluorous metal-organic framework derived recyclable composite as a promising platform to tackle marine oil spills[J]. Chem. Eur. J., 2016, 22: 10937-10943.
40 Chen T H, Popov I, Zenasni O, et al. Superhydrophobic perfluorinated metal-organic frameworks[J]. Chem. Commun., 2013, 49: 6846-6848.
41 Liu C, Huang A S. One-step synthesis of the superhydrophobic zeolitic imidazolate framework F-ZIF-90 for efficient removal of oil[J]. New J. Chem., 2018, 42(4): 2372-2375.
42 Moghadam P Z, Ivy J F, Arvapally R K, et al. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation[J]. Chem. Sci., 2017, 8(5): 3989-4000.
43 Noro S I, Nakamura T. Fluorine-functionalized metal-organic frameworks and porous coordination polymers[J]. NPG Asia Mater., 2017, 9(9): e433.
44 Wang B, Lv X L, Feng D, et al. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. J. Am. Chem. Soc., 2016, 138(19): 6204-6216.
45 Makal T A, Wang X, Zhou H C. Tuning the moisture and thermal stability of metal-organic frameworks through incorporation of pendant hydrophobic groups[J]. Cryst. Growth Des., 2013, 13(11): 4760-4768.
46 Roy S, Suresh V M, Maji T K, et, al. Self-cleaning MOF: realization of extreme water repellence in coordination driven self-assembled nanostructures[J]. Chem. Sci., 2016, 7(3): 2251-2256.
47 Zhu N X, Wei Z W, Chen C X, et al. Self-generation of surface roughness by low-surface-energy alkyl chains for highly stable superhydrophobic/superoleophilic MOFs with multiple functionalities[J]. Angew. Chem. Int. Ed., 2019, 58: 17033-17040.
48 Zhang M H, Xin X L, Xiao Z Y, et al. A multi-aromatic hydrocarbon unit induced hydrophobic metal-organic framework for efficient C2/C1 hydrocarbon and oil/water separation[J]. J. Mater. Chem. A, 2017, 5(3): 1168-1175.
49 Zhang M H, Guo B B, Feng Y, et al. Amphipathic pentiptycene-based water-resistant Cu-MOF for efficient oil/water separation[J]. Inorg. Chem., 2019, 58(9): 5384-5387.
50 Xie L H, Liu X M, He T, et al. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds[J]. Chem, 2018, 4(8): 1911-1927.
51 Nguyen J G, Cohen S M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification[J]. J. Am. Chem. Soc., 2010, 132(13): 4560-4561.
52 Eom S, Kang D W, Kang M J, et al. Fine-tuning of wettability in a single metal-organic framework via post coordination modification and its reduced graphene oxide aerogel for oil-water separation[J]. Chem. Sci., 2019, 10(9): 2663-2669.
53 Canivet J, Aguado S, Daniel C, et al. Engineering the environment of a catalytic metal-organic framework by postsynthetic hydrophobization[J]. ChemCatChem, 2011, 3(4): 675- 678.
54 Liu C Y, Liu Q, Huang A S. A superhydrophobic zeolitic imidazolate framework (ZIF-90) with high steam stability for efficient recovery of bioalcohols[J]. Chem. Commun., 2016, 52: 3400-3402.
55 Zhang H F, Li M, Wang X Z, et al. Fine-tuning metal-organic framework performances by spatially-differentiated postsynthetic modification[J]. J. Mater. Chem. A, 2018, 6: 4260-4265.
56 Sun Q, He H M, Gao W Y, et al. Imparting amphiphobicity on single-crystalline porous materials[J]. Nat. Commun., 2016, 7: 13300.
57 Zha Q J, Sang X X, Liu D Y, et al. Modification of hydrophilic amine-functionalized metal-organic frameworks to hydrophobic for dye adsorption[J]. J. Solid State Chem., 2019, 27: 523-29.
58 Yang S L, Peng L, Sun D T, et al. A new post-synthetic polymerization strategy makes metal-organic frameworks more stable[J]. Chem. Sci., 2019, 10(17): 4542-4549.
59 Zhang W, Hu Y L, Ge J, et al. A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity[J]. J. Am. Chem. Soc., 2014, 136(49): 16978-16981.
60 Yim C Y, Jeon S M. Direct synthesis of Cu-BDC frameworks on a quartz crystal microresonator and their application to studies of n-hexane adsorption[J]. RSC Adv., 2015, 5: 67454-67458.
61 Meng W, Feng Z J, Li F, et al. Porous coordination polymer coatings fabricated from Cu3(BTC)2∙3H2O with excellent superhydrophobic and superoleophilic properties[J]. New J. Chem., 2016, 40(12): 10554-10559.
62 Kang Z X, Wang S S, Fan L L, et al. Surface wettability switching of metal-organic framework mesh for oil-water separation[J]. Mater. Lett., 2017, 189: 82-85.
63 Qian X K, Sun F X, Sun J, et al. Imparting surface hydrophobicity to metal-organic frameworks using a facile solution-immersion process to enhance water stability for CO2 capture[J]. Nanoscale, 2017, 9(5): 2003-2008.
64 Wen G, Guo Z G. Facile modification of NH2-MIL-125(Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution[J]. Colloids Surf. A, 2018, 541: 58-67.
65 Du J C, Zhang C Y, Pu H, et al. HKUST-1 MOFs decorated 3D copper foam with superhydrophobicity/superoleophilicity for durable oil/water separation[J]. Colloids Surf. A, 2019, 573: 222-229.
66 Su P C, Zhang X, Li Y, et al. Distillation of alcohol/water solution in hybrid metal-organic framework hollow fibers[J]. AIChE J., 2019, 65(9): e16693.
67 Yuan S S, Zhu J Y, Li Y, et al. Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface[J]. J. Mater. Chem. A, 2019, 7(6): 2723-2729.
68 Jayaramulu K, Datta K K R, Rösler C, et al. Biomimetic superhydrophobic/superoleophilic highly fluorinated graphene oxide and ZIF-8 composites for oil-water separation[J]. Angew. Chem. Int. Ed., 2016, 55(3): 1178-1182.
69 Mullangi D, Shalini S, Nandi S, et al. Super-hydrophobic covalent organic frameworks for chemical resistant coatings and hydrophobic paper and textile composites[J]. J. Mater. Chem. A, 2017, 5(18): 8376-8384.
70 Ge Y, Zhou H, Ji Y, et al. Understanding water adsorption and the impact on CO2 capture in chemically stable covalent organic frameworks[J]. J. Phys. Chem. C, 2018, 122(48): 27495-27506.
71 Zhao Y, Yao K X, Teng B, et al. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture[J]. Energ. Environ. Sci., 2013, 6(12): 3684-3692.
72 Wang G B, Leus K, Jena H S, et al. A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO2 capture performance[J]. J. Mater. Chem. A, 2018, 6(15): 6370-6375.
73 Sun Q, Aguila B, Perman J A, et al. Integrating superwettability within covalent organic frameworks for functional coating[J]. Chem, 2018, 4(7): 1726-1739.
74 Li X, Zhang C, Cai S, et al. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks[J]. Nat. Commun., 2018, 9(1): 2998.
75 Nandi S, Werner-Zwanziger U, Vaidhyanathan R. A triazine-resorcinol based porous polymer with polar pores and exceptional surface hydrophobicity showing CO2 uptake under humid conditions[J]. J. Mater. Chem. A, 2015, 3: 21116-21122.
76 Yan Z J, Ren H, Ma H P, et al. Construction and sorption properties of pyrene-based porous aromatic frameworks[J]. Micropor. Mesopor. Mater., 2013, 173: 92-98.
77 Shi Q, Sun H X, Yang R X, et al. Synthesis of conjugated microporous polymers for gas storage and selective adsorption[J]. J. Mater. Sci., 2015, 50: 6388-6394.
78 Jiao R, Bao L L, Zhang W L, et al. Synthesis of aminopyridine-containing conjugated microporous polymers with excellent superhydrophobicity for oil/water separation[J]. New J. Chem., 2018, 42(18): 14863-14869.
79 Li X, Guo J W, Tong R, et al. Microporous frameworks based on adamantane building blocks: synthesis, porosity, selective adsorption and functional application[J]. React. Funct. Polym., 2018, 130: 126-132.
80 Dey D, Banerjee P. Toxic organic solvent adsorption by a hydrophobic covalent polymer[J]. New J. Chem., 2019, 43(9): 3769-3777.
81 Dey D, Murmu N C, Banerjee P. Tailor-made synthesis of an melamine-based aminal hydrophobic polymer for selective adsorption of toxic organic pollutants: an initiative towards wastewater purification[J]. RSC Adv., 2019, 9(13): 7469-7478.
82 Wang X S, Liu J, Bonefont J M, et al. A porous covalent porphyrin framework with exceptional uptake capacity of saturated hydrocarbons for oil spill cleanup[J]. Chem. Commun., 2013, 49(15): 1533-1535.
83 Xiao Z Y, Zhang M H, Fan W D, et al. Highly efficient oil/water separation and trace organic contaminants removal based on superhydrophobic conjugated microporous polymer coated devices[J]. Chem. Eng. J., 2017, 326: 640-646.
84 Mu P, Sun H X, Zang J K, et al. Facile tunning the morphology and porosity of a superwetting conjugated microporous polymers[J]. React. Funct. Polym., 2016, 106: 105-111.
85 Sun Q, Aguila B, Verma G, et al. Superhydrophobicity: constructing homogeneous catalysts into superhydrophobic porous frameworks to protect them from hydrolytic degradation[J]. Chem, 2016, 1(4): 628-639.
86 Tang Y Q, Dong K, Wang S, et al. Boosting the hydrolytic stability of phosphite ligand in hydroformylation by the construction of superhydrophobic porous framework[J]. Mol. Catal., 2019, 474: 110408.
87 Luo R C, Chen Y J, He Q, et al. Metallosalen-based ionic porous polymers as bifunctional catalysts for the conversion of CO2 into valuable chemicals[J]. ChemSusChem, 2017, 10(7): 1526-1533.
[1] Zili YANG, Caiyun GAO, Feiran GONG, Xuyun YU, Yun YU, Tianxun CAI. Working pressures on performance of ultrasonic atomization liquid desiccant dehumidification system [J]. CIESC Journal, 2020, 71(S1): 129-135.
[2] Bowen LIU, Shuai DENG, Shuangjun LI, Li ZHAO, Zhenyu DU, Lijin CHEN. Experimental investigation on energy-efficiency performance of temperature swing adsorption system for CO2 capture [J]. CIESC Journal, 2020, 71(S1): 382-390.
[3] Puxu LIU, Chaohui HE, Libo LI, Jinping LI. Stable mixed metal-organic framework for efficient C2H6/C2H4 separation [J]. CIESC Journal, 2020, 71(9): 4211-4218.
[4] Shuping ZOU, Zhentao JIANG, Zhicai WANG, Zhiqiang LIU, Yuguo ZHENG. Synthesis of (R)-epichlorohydrin catalyzed by cross-linked cell aggregates of epoxide hydrolase [J]. CIESC Journal, 2020, 71(9): 4238-4245.
[5] Jing XU, Zixuan YOU, Junqi ZHANG, Zheng CHEN, Deguang WU, Feng LI, Hao SONG. Advances in engineering electroactive biofilms by synthetic biology approaches [J]. CIESC Journal, 2020, 71(9): 3950-3962.
[6] Meng JIA, Jiabin ZHANG, Yaqing FENG, Bao ZHANG. Application of metal-porphyrin-based frameworks in photocatalysis [J]. CIESC Journal, 2020, 71(9): 4046-4057.
[7] Xiaobin JIANG, Guoxin SUN, Gaohong HE. Research progress of high-efficiency membrane distillation crystallization process [J]. CIESC Journal, 2020, 71(9): 3905-3918.
[8] Yang XIAO, Chunming XU, Xiaoxia YANG, Lihong ZHANG, Wang SUN, Jinshuo QIAO, Zhenhua WANG, Kening SUN. Preparation and electrochemical properties of NiMn2O4 spinel oxide cathode [J]. CIESC Journal, 2020, 71(9): 4292-4302.
[9] Guoyu WEN, Wei WANG, Rui XIE, Xiaojie JU, Zhuang LIU, Liangyin CHU. Recent progress of hydrogel materials in the field of enrichment and separation of metal ions [J]. CIESC Journal, 2020, 71(9): 3866-3875.
[10] Long TIAN, Ting LIU, Kening SUN. Research progress of graphene oxide membrane for water purification [J]. CIESC Journal, 2020, 71(9): 4112-4130.
[11] Chengping ZHANG, Feiyao QING, Xiaoqing JIA, Hengdao QUAN. Synthesis and application of five-membered ring fluoride [J]. CIESC Journal, 2020, 71(9): 3963-3978.
[12] Xin LIU, Pingli FENG, Wenshuo HOU, Zhenhua WANG, Kening SUN. Research progress of interlayers for lithium-sulfur batteries [J]. CIESC Journal, 2020, 71(9): 4031-4045.
[13] Xin ZHUO, Minghui QIU, Ping LUO. Mass transfer performance and resistance analysis of chemical absorption of NOx based on ceramic membrane contactor [J]. CIESC Journal, 2020, 71(8): 3652-3660.
[14] Qianqian LI, Siyang TANG, Hairong YUE, Changjun LIU, Kui MA, Shan ZHONG, Bin LIANG. Study on the photocatalytic oxidative dehydrogenation of ethane with CO2 over Pd-Rh /TiO2 catalyst [J]. CIESC Journal, 2020, 71(8): 3556-3564.
[15] Yudong YAO, Zhonghua WANG, Zhibin LIN, Xiaohui HU, Jin CHEN, Songsheng ZHENG, Zhaolin WANG. Influences of Pt-Ir electro-codeposition potentials on hydrogen production with ammonia electrolysis [J]. CIESC Journal, 2020, 71(8): 3780-3788.
Full text



[1] LI Yichuan1, SHEN Benxian1, Wang Lei1,2, XIAO Weiguo2, ZHAO Jigang1. Energy consumption simulation and optimization of solvent recovery process in direct epoxidation of propylene[J]. Chemical Industry and Engineering Progree, 2012, 31(12): 2806 -2810 .
[2] REN Nanqi, ZHOU Xianjiao, GUO Wanqian, YANG Shanshan. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84 -94 .
[3] LUO Qin, ZHAO Yinfeng, YE Mao, LIU Zhongmin. Application of electrical capacitance tomography for gas-solid fluidized bed measurement[J]. CIESC Journal, 2014, 65(7): 2504 -2512 .
[4] CHEN Lei, CHEN Hanping, LU Qiang, SONG Yang, DING Xuejie, WANG Xianhua, YANG Haiping. Characterization of structure and pyrolysis behavior of lignin[J]. CIESC Journal, 2014, 65(9): 3626 -3633 .
[5] CHU Liangyin,WANG Wei,JU Xiaojie,XIE Rui. Progress of construction of micro-scale phase interfaces and preparation of novel functional materials with microfluidics[J]. Chemical Industry and Engineering Progree, 2014, 33(09): 2229 -2234 .
[6] XIE Rui, JU Xiaojie, WANG Wei, LIU Zhuang, CHU Liangyin. Regulation on rates of mass transfer, reaction and separation via smart membranes[J]. CIESC Journal, 2015, 66(9): 3279 -3286 .
[7] . CIESC February(HUAGONG XUEBAO) Vol.67 No.2 February 2016[J]. CIESC Journal, 2016, 67(2): 0 .
[8] LIN Yueshun, ZHOU Hongjun, ZHOU Xinhua, GONG Sheng, XU Hua, CHEN Huayao. Preparation and properties of pH-responsive control release system of PAA/chlorpyrifos/amino functionalized mesoporous silica[J]. CIESC Journal, 2016, 67(10): 4500 -4507 .
[9] DING Zhaoyang, HAN Zhiyang, SHI Wenrong, SHEN Yuanhui, TIAN Caixia, HAN Yangyuan, ZHANG Donghui. Analysis of dynamic effective mass transfer coefficients of rapid pressure swing adsorption process for oxygen production[J]. CIESC Journal, 2018, 69(2): 759 -768 .
[10] XU Mimi, WANG Shujuan. Research progress in CO2 capture technology using liquid-liquid biphasic solvents[J]. CIESC Journal, 2018, 69(5): 1809 -1818 .