CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 1943-1963.DOI: 10.11949/0438-1157.20191302

• Reviews and monographs • Previous Articles     Next Articles

State of the art of flow field plates of proton exchange membrane fuel cells

Qiang ZHAO(),Hang GUO(),Fang YE,Chongfang MA   

  1. MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2019-10-31 Revised:2019-12-27 Online:2020-05-05 Published:2020-05-05
  • Contact: Hang GUO

质子交换膜燃料电池流场板研究进展

赵强(),郭航(),叶芳,马重芳   

  1. 北京工业大学环境与能源工程学院传热强化与过程节能教育部重点实验室及传热与能源利用北京市重点实验室,北京 100124
  • 通讯作者: 郭航
  • 作者简介:赵强(1994—),男,硕士研究生,s201705128@emails.bjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(51976004)

Abstract:

The flow field plate is one of the core components of a proton exchange membrane fuel cell, and its structure directly affects the utilization efficiency of the reaction gas and the drainage and heat dissipation performance of the fuel cell. The design and research progress of flow field plates for proton exchange membrane fuel cells in the past decade have been reviewed. The design and optimization of flow channel sizes, flow channel cross sections, inlet distributors and flow channel arrangements improve fuel cell thermal and water managements, and electricity performance based on parallel, serpentine, interdigital and spot flow field. Various forms of combined flow field can combine the advantages of different flow fields. Multi-level fractal bionic flow field can optimize the reactants, current density and pressure distribution. Three-dimensional refined flow fields can reduce concentration polarization by improving the gas supply.

Key words: fuel cell, flow field plate, flow channel, water and thermal management, heat transfer, mass transfer

摘要:

流场板是质子交换膜燃料电池的核心部件之一,其结构直接影响着反应气体的利用效率以及燃料电池的排水及散热性能。综述了近十余年来质子交换膜燃料电池流场板的设计与研究进展。研究者们基于平行流场、蛇形流场、交指流场、点状流场,从流道尺寸、流道截面、进口分配段、流道布置等方面开展结构设计和优化,不同程度提高了燃料电池水热管理以及电性能。此外,各种形式的组合流场可综合不同流场优点,多级分形仿生流场优化了反应物、压力与电流密度分布,三维精细化流场通过改善供气方式降低了浓差极化。

关键词: 燃料电池, 流场板, 流道, 水热管理, 传热, 传质

CLC Number: