CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4663-4673.doi: 10.11949/0438-1157.20191292

• Catalysis, kinetics and reactors • Previous Articles     Next Articles

Study on diffusion-reaction coupled strengthening mechanism based on electrosynthesis of titanium dioxide nanotube array

Huang ZHOU(),Yu CHANG,Xing FAN,Nannan ZHANG(),Changyuan TAO   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
  • Received:2019-10-30 Revised:2020-03-09 Online:2020-10-05 Published:2020-03-18
  • Contact: Nannan ZHANG E-mail:zhouhuang2019@163.com;zhangnn@cqu.edu.cn

Abstract:

As an excellent semiconductor material, the TiO2 is widely used in the areas of photocatalysis, solar cells, and biomedical devices. Various technologies have been established to prepare TiO2 nanotube array. These technologies mainly include numerous hydrothermal methods, template method, sol-gel method, and anodic oxidation method. Among them, the anodic oxidation method attracts much attention because of its highly ordered, uniform distribution and variable structure control. At present, the modified preparation of TiO2 nanotube array is still studied by researchers. However, basic study on the kinetic mechanism of the growth process of nanotube array is rare. Herein, we proposed the diffusion-reaction coupled strengthening mechanism based on the electrosynthesis of titanium dioxide nanotube array. Furthermore, the evolution of TiO2 nanotube array with electrolysis time was investigated, and the nonlinear dynamic mechanism of TiO2 nanotube array structure growth process was discussed in combination with SEM and electrochemical impedance analysis. It was found that the formation of TiO2 nanotube array was a self-organization behavior in the diffusion-reaction coupling process of oligomer hydroxyl titanium intermediates. Moreover, the reaction kinetics mechanism was established by analyzing the electrochemical growth mechanism, and its linear stability was analyzed. Besides, the parameter threshold space formed by the ordered structure in TiO2 nanotube array and the accompanying electrochemical oscillation were explained, and its evolution process was also discussed. After optimization, TiO2 nanotube array with ordered structure was prepared. It revealed the internal mechanism of diffusion-reaction coupling in the electrosynthesis of TiO2 nanotube array. In addition, the nonlinear dynamic mechanism proposed in this paper exists widely in the electrodissolution process of various metals, which has a significant influence on the structure formation of products and the power consumption of reaction process. This also provides a theoretical basis for strengthening the batch electrosynthesis process of new nanomaterials.

Key words: titanium dioxide nanotube array, nanostructure, nonlinear kinetics, chemical reaction, electrochemical oscillation, linear stability analysis

CLC Number: 

  • TQ 134.1

Fig.1

Plot of current vs time in growth process of TiO2 nanotubes by anodization on surface of Ti electrode(a) and SEM images [(b)—(e)] of TiO2 nanotube arrays at stage(1)—(4) in Fig.1(a), respectively"

Fig.2

Plot of current vs time(a) and the SEM images [(b)—(e)] in the growth process of TiO2 nanotubes by anodization under different voltage"

Fig.3

Effect of F- concentration on the growth of TiO2 nanotubes"

Fig.4

Plot of current vs. time during growth of TiO2 nanotube arrays for varying water concentration"

Fig.5

The effects of H2O content on the growth of TiO2 nanotubes"

Fig.6

Δ0, Tr0 change with Z, Y0 respectively (k4k3 = 0.9, k1 = 0.01, k6 = 0.5)"

1 Kavan L, O'Regan B, Kay A, et al. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3[J]. Journal of Electroanalytical Chemistry, 1993, 346(1/2): 291-307.
2 Asahi R, Morikawa T, Ohwaki T, et al. Visible light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
3 赖跃坤, 孙岚, 左娟, 等. 氧化钛纳米管阵列制备及形成机理[J]. 物理化学学报, 2004, 20(9): 1063-1066.
Lai Y K, Sun L, Zuo J, et al. Preparation and formation mechanism of titanium oxide nanotube arrays[J]. Acta Physico-Chimica Sinica, 2004, 20(9): 1063-1066.
4 Jan M M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium[J]. Angewandte Chemie International Edition, 2005, 44(14): 2100-2102.
5 田甜, 肖秀峰, 刘榕芳. 电化学阳极氧化自组织TiO2纳米管阵列的研究[J]. 传感技术学报, 2006, 19(5): 1014-1017.
Tian T, Xiao X F, Liu R F. Electrochemistry anodic oxidation self assembled TiO2 nanotube arrays[J]. Chinese Journal of Sensors and Actuators, 2006, 19(5): 1014-1017.
6 李荐, 罗佳, 彭振文, 等. 不同阳极氧化条件下TiO2纳米管阵列的制备及表征[J]. 无机材料学报, 2010, 25(5): 44-48.
Li J, Luo J, Peng Z W, et al. Preparation and characterization of TiO2 nanotube arrays under different anodizing conditions[J]. Journal of Inorganic Materials, 2010, 25(5): 44-48.
7 高佳明, 王明, 马晓华, 等. 烧结温度对TiO2/不锈钢中空纤维复合膜结构和性能的影响[J]. 化工学报, 2018, 69(11): 4879-4886.
Gao J M, Wang M, Ma X H, et al. Effect of sintering temperature on structures and properties of TiO2/stainless steel hollow fiber composite membrane[J]. CIESC Journal, 2018, 69(11): 4879-4886.
8 覃方丽, 袁耀, 艾冠亚, 等. 三维有序大/介孔TiO2反opal光阳极制备及光电性能[J]. 化工学报, 2017, 68(7): 2925-2930.
Qin F L, Yuan Y, Ai G Y, et al. Three-dimensional ordered macro/mesoporous TiO2 inverse opal electrode with enhanced dye-sensitized solar cells' efficiency [J]. CIESC Journal, 2017, 68(7): 2925-2930.
9 李坚, 郭丽芳, 李廷鱼, 等. 阳极氧化制备硅基TiO2纳米管阵列及形貌表征[J]. 微纳电子技术, 2019, 56(7): 522-528.
Li J, Guo L F, Li T Y, et al. Preparation of silicon-based TiO2 nanotube arrays by anodic oxidation and morphological characterization[J]. Micronanoelectronic Technology, 2019, 56(7): 522-528.
10 Dawei G, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12): 3331-3334.
11 Prakasam H E, Shankar K, Paulose M, et al. A new benchmark for TiO2 nanotube array growth by anodization[J]. Journal of Physical Chemistry C, 2007, 111(20): 7235-7241.
12 孙岚, 李静, 庄惠芳, 等. TiO2纳米管阵列的制备、改性及其应用研究进展[J]. 无机化学学报, 2007, 23(11): 12-21.
Sun L, Li J, Zhuang H F, et al. Progress on fabrication, modification and applications of titania nanotube arrays[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(11): 12-21.
13 管东升, 方海涛, 逯好峰, 等. 阳极氧化TiO2纳米管阵列的制备与掺杂[J]. 化学进展, 2008, 20(12): 1868-1879.
Guan D S, Fang H T, Lu H F, et al. Preparation and doping of anodic TiO2 nanotube array[J]. Progress in Chemistry, 2008, 20(12): 1868-1879.
14 廖建军, 李士普, 曹献坤, 等. 有序TiO2纳米管阵列光催化性能研究进展[J]. 化工进展, 2011, 30(9): 2003-2012.
Liao J J, Li S P, Cao X K, et al. Review on photocatalytic activity of highly ordered TiO2 nanotube arrays[J]. Chemical Industry and Engineering Progress, 2011, 30(9): 2003-2012.
15 Zhang W, Liu Y, Guo F, et al. Kinetic analysis of anodic growth of TiO2 nanotubes: effects of voltage and temperature[J]. Journal of Materials Chemistry C, 2019, 7(45): 14098-14108.
16 弓程, 向思弯, 张泽阳, 等. LaCoO3-TiO2纳米管阵列的构筑及可见光光催化性能[J]. 物理化学学报, 2019, 35(6): 616-623.
Gong C, Xiang S W, Zhang Z Y, et al. Construction and visible-light-driven photocatalytic properties of LaCoO3-TiO2 nanotube arrays[J]. Acta Physico-Chimica Sinica, 2019, 35(6): 616-623.
17 O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.
18 Li H, Wang J, Huang K, et al. In-situ preparation of multi-layer TiO2 nanotube array thin films by anodic oxidation method[J]. Materials Letters, 2011, 65(8): 1188-1190.
19 Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications[J]. Angewandte Chemie International Edition, 2011, 50(13): 2904-2939.
20 Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes[J]. Journal of Materials Chemistry, 2007, 17(15): 1451-1457.
21 汪静茹, 李文尧, 姚宝殿. 水热法制备二氧化钛纳米管: 形成机理、影响因素及应用[J]. 材料导报, 2016, 30(5): 144-152.
Wang J R, Li W Y, Yao B D. Hydrothermally produced titania nanotubes: formation mechanism, influence factors and applications[J]. Materials Review, 2016, 30(5): 144-152.
22 Su Z, Zhou W. Formation, morphology control and applications of anodic TiO2 nanotube arrays[J]. Journal of Materials Chemistry, 2011, 21(25): 8955-8970.
23 Zhu X, Han H, Duan W, et al. Research progress in formation mechanism of TiO2 nanotubes and nanopores in porous anodic oxide[J]. Acta Physico-Chimica Sinica, 2012, 28(6): 1291-1305.
24 Zhang S, Yu D, Li D, et al. Forming process of anodic TiO2 nanotubes under a preformed compact surface layer[J]. Journal of the Electrochemical Society, 2014, 161(10): E135-E141.
25 LeClere D, Velota A, Skeldon P, et al. Tracer investigation of pore formation in anodic titania[J]. Journal of the Electrochemical Society, 2008, 155(9): 487-494.
26 Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes[J]. Chemical Reviews, 2014, 114(19): 9385-9454.
27 Petukhov D I, Eliseev A A, Kolesnik I V, et al. Formation mechanism and packing options in tubular anodic titania films[J]. Microporous and Mesoporous Materials, 2008, 114(1/2/3): 440-447.
28 Lee W, Kim J C, Gçsele U. Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions[J]. Advanced Functional Materials, 2010, 20(1): 21-27.
29 Liu H, Tao L, Shen W. Controllable current oscillation and pore morphology evolution in the anodic growth of TiO₂ nanotubes[J]. Nanotechnology, 2011, 22(15): 155603.
30 Tao J L, Zhao J L, Tang C C, et al. Mechanism study of self-organized TiO2 nanotube arrays by anodization[J]. New Journal of Chemistry, 2008, 32(12): 2164-2168.
31 Tovbin Y K. Local equations of state in nonequilibrium heterogeneous physicochemical systems[J]. Russian Journal of Physical Chemistry A, 2017, 91(3): 403-424.
32 Fan X, Hou J, Sun D, et al. Mn-oxides catalyzed periodic current oscillation on the anode[J]. Electrochimica Acta, 2013, 102: 466-471.
33 Bai H, Qing S, Yang D, et al. Periodic potential oscillation during oxygen evolution catalyzed by manganese oxide at constant current[J]. Journal of the Electrochemical Society, 2017, 164(4): E78-E83.
34 Raja K S, Gandhi T, Misra M. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes[J]. Electrochemistry Communications, 2007, 9(5): 1069-1076.
35 Krischer K, Mazouz N, Fronts Grauel P., waves, and stationary patterns in electrochemical systems[J]. Angewandte Chemie, 2001, 40(5): 850-869.
36 李如生. 非平衡态热力学和耗散结构[M]. 北京: 清华大学出版社, 1986.
Li R S. Nonequilibrium Thermodynamics and Dissipative Structure[M]. Beijing: Tsinghua University Press, 1986.
37 Fan X, Liao L, Chang Y, et al. Nonlinear self-organizing kinetics in the electrochemical growth of alumina nanotube arrays[J]. ChemElectroChem, 2014, 1(5): 925-932.
38 Thompson G E, Furneaux R C, Wood G C, et al. Nucleation and growth of porous anodic films on aluminium[J]. Nature, 1978, 272(5652): 433-435.
39 Guin D, Manorama S V, Latha J N L, et al. Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization, and tested for sntibacterial outcome[J]. The Journal of Physical Chemistry C, 2007, 111(36): 13393-13397.
[1] Ti DONG, Peng PENG, Yiwei WANG, Wenjiong CAO, Yaodong ZHENG, Bo LEI, Fangming JIANG. Simulation on lithium ion battery discharge process with large current [J]. CIESC Journal, 2020, 71(8): 3710-3721.
[2] Jingfang SUN, Chengyan GE, Dongqi AN, Qing TONG, Fei GAO, Lin DONG. Review on characterization methods of oxygen vacancy in rare earth cerium-based catalysts [J]. CIESC Journal, 2020, 71(8): 3403-3415.
[3] Xidong LIN, Youchen TANG, Quanfei SU, Shaohong LIU, Dingcai WU. Hierarchical porous carbon materials: structure design, functional modification and new energy devices applications [J]. CIESC Journal, 2020, 71(6): 2586-2598.
[4] Yaqian WANG, Xiao LU, Bo PENG. Control of magnetic field to luminescence characteristics in (C4H9NH3)2(CH3NH3)Pb2I7 perovskite [J]. CIESC Journal, 2020, 71(6): 2912-2917.
[5] Yinhu KANG, Pengyuan ZHANG, Xiaofeng LU. Study on oscillatory extinction dynamics mechanism of dimethyl ether spherical diffusion flame [J]. CIESC Journal, 2020, 71(4): 1469-1481.
[6] Jie WANG, Yuan LI, Hailei ZHAO. Synthesis and lithium storage performance of three-dimensional Co3O4 micro-flowers assembled with nanoparticles [J]. CIESC Journal, 2020, 71(4): 1844-1850.
[7] Jing LI, Gang DU, Juanjuan YIN. Preparation and electrochemical properties of ZnxCo1-xCO3 carbonateanode materials [J]. CIESC Journal, 2020, 71(3): 1390-1397.
[8] Xiaogang LIU, Bo WEI, Yunfei SHI, Jinru SUN, Yu TIAN, Yu ZHAO, Yaoling CHI, Hong WANG, Cuiqing LI, Yongji SONG. Simultaneous removal of NO and soot over La1-xLixMnO3 perovskite catalysts [J]. CIESC Journal, 2020, 71(3): 1053-1059.
[9] Haihua PAN, Ruikang TANG. Information transfer and transformation in bio/biomimetic-mineralization [J]. CIESC Journal, 2020, 71(1): 68-80.
[10] Tianmi WANG,Guihua TANG. Plasmonic nanofluids based on Janus nanosheets and sandwich-structured nanosheets for solar energy harvest [J]. CIESC Journal, 2019, 70(S2): 336-342.
[11] Xingpeng LIU, Dandan YAN. Spectrum changes of electromagnetic pluses in chemical reactions [J]. CIESC Journal, 2019, 70(S1): 177-181.
[12] Zhaowen ZENG, Cheng ZHENG, Taoyan MAO, Yuan WEI, Runhui XIAO, Siyu PENG. Progress in research and application of microwave in chemical process [J]. CIESC Journal, 2019, 70(S1): 1-14.
[13] Jing XIANG, Hong WANG, Xun ZHU, Yudong DING, Qiang LIAO, Rong CHEN. Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties [J]. CIESC Journal, 2019, 70(9): 3545-3552.
[14] Hong ZHANG, Liu TANG. Density functional theory study on parasitic reactions of GaN-MOVPE [J]. CIESC Journal, 2019, 70(9): 3275-3282.
[15] Runxia CAI, Yiqun HUANG, Lu CHENG, Dongfang LI, Chung-hwan JEON, Hairui YANG, Junfu LYU, Man ZHANG. Attrition of limestone during fluidized bed calcination and sulfation [J]. CIESC Journal, 2019, 70(8): 3086-3093.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YU Congli, LIU Yanmei, CHEN Gangling, GU Xuehong, XING Weihong. Pretreatment of Isopropanol Solution from Pharmaceutical Industry and Pervaporation Dehydration by NaA Zeolite Membranes[J]. , 2011, 19(6): 904 -910 .
[2] WU Weize, WU Lianzeng and LIU Zhenyu (State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan?030001,Shanxi,China). EXTRACTION OF EGG YOLK OIL WITH SUPERCRITICAL CARBON DIOXIDE: EXPERIMENTS AND MODELING[J]. , 2001, 52(2): 130 -134 .
[3] QIN Wei,ZHANG Ying,LUO Xuehui and DAI Youyuan (Department of Chemical Engineering, Tsinghua University, Beijing?100084,China). SEPARATION OF OXALIC ACID AND GLYOXYLIC ACID BY EXTRACTION[J]. , 2001, 52(2): 135 -140 .
[4]

JIN Ningde;ZHAO Xin;ZHENG Hua;CHEN Jingxia

.

Soft measurement method of flow parameters of oil-gas-water three-phase flow in oil wells with basket concentrating flow diverter

[J]. , 2006, 57(12): 2847 -2853 .
[5] Zhang Zhenguo;Wang Shiping;Geng Jianjun;Deng Songjiu(Chemical Engineering Research Institute of S C U T). CONDENSATION HEAT TRANSFER AND ENHANCEMENT OF NONAZEOTROPIC MIXTURES IN HORIZONTAL BUNDLE[J]. , 1996, 47(5): 642 -644 .
[6] FAN Yiqun, QI Hong, XU Nanping. Advance in preparation techniques of porous ceramic membranes[J]. CIESC Journal, 2013, 64(1): 107 -115 .
[7] GONG Hongsheng, HU Wenbin, LIAO Liewen, LUO Zebao, ZHANG Sumei, YIN Guoqiang. Synthesis of 1,1,1,3,5,5,5-heptamethyltrisiloxane by response surface methodology[J]. CIESC Journal, 2013, 64(10): 3633 -3639 .
[8] WU Meirong, ZHANG Rui, ZHOU Jun, XIE Xinxin, YONG Xiaoyu, YAN Zhiying, GE Mingmin, ZHENG Tao. Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria[J]. CIESC Journal, 2014, 65(5): 1602 -1606 .
[9] LIU Changjun, GUO Qiuting, YE Jingyun, SUN Kaihang, FAN Zhigang, GE Qingfeng. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6 -13 .
[10] WANG Ruirui, ZHAO Youjing, SHAO Mingfei, XIANG Xu, DUAN Xue. Recent progresses in water oxidation over layered double hydroxide catalysts[J]. CIESC Journal, 2016, 67(1): 54 -72 .