CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4826-4835.doi: 10.11949/0438-1157.20191231

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

Study on thermal properties of stearyl alcohol modified graphene oxide/ n-octadecane composite phase change materials

Di CAI1,2(),Jing LI1,2()   

  1. 1.Key Laboratory of Low-Grade Energy Utilization Technologies & Systems, Chongqing University, Chongqing 400044, China
    2.School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
  • Received:2019-10-23 Revised:2020-02-12 Online:2020-10-05 Published:2020-02-26
  • Contact: Jing LI E-mail:201710131046@cqu.edu.cn;lj202740@cqu.edu.cn

Abstract:

Adding high thermal conductivity fillers to n-octadecane to form a composite phase change material(PCM) can improve its thermal conductivity. At the same time, to ensure high thermal conductivity, dispersion stability and recycling reliability of PCM, a type of composite PCM has been fabricated by grafting stearic alcohol onto graphene oxide (GO). The modified graphene/n-octadecane composite PCMs with 0, 1%, 2%, 3% and 4%(mass) of modified graphene were prepared to characterize and study of feature structure and thermophysical properties by means of scanning electron microscope, infrared spectrum analysis, differential scanning calorimetry and thermal conductivity analysis, etc. Experiments show that the modified graphene/n-octadecane composite PCMs prepared in this paper has good dispersion stability. When the mass fraction of modified graphene reaches 4%, the thermal conductivity of composite PCMs is 131.9% higher than that of pure n-octadecane.

Key words: graphene oxide, composite PCMs, chemical modification, dispersion stability, thermal properties

CLC Number: 

  • O 642

Fig.1

Statuses of composite phase change material after different melting-solidification cycles"

Fig2

Particle size distribution of GNS and MG powder"

Fig.3

Particle size distribution of GNS and MG after 20 phase change cycles"

Fig.4

Composite phase change materials with different mass fractions of modified graphene"

Fig.5

Microstructure and morphology of graphene nanoplatelets and modified graphene"

Fig.6

FTIR spectra of GO, MG, n-octadecane and 2.0%(mass) composite PCM"

Fig.7

DSC curves of n-octadecane and composite phase change materials"

Table 1

Phase transition temperature and enthalpy of n-octadecane and composite phase change materials during melting process"

样品起始温度Tms /℃峰值Tmp /℃终止温度Tme/℃相变焓Hm/(J/g)
正十八烷24.628.634.9232.0
1%(质量)改性石墨烯/正十八烷22.629.234.4229.0
2%(质量)改性石墨烯/正十八烷24.228.834.3228.3
3%(质量)改性石墨烯/正十八烷24.028.534.5223.3
4%(质量)改性石墨烯/正十八烷23.228.533.8220.3

Table 2

Phase transition temperature and enthalpy of n-octadecane and composite phase change materials during solidification process"

样品起始温度Tss/℃峰值Tsp/℃终止温度Tse/℃相变焓Hs/(J/g)
正十八烷27.826.923.2-225.8
1%(质量)改性石墨烯/正十八烷27.927.023.1-222.9
2%(质量)改性石墨烯/正十八烷28.227.223.2-220.2
3%(质量)改性石墨烯/正十八烷28.426.923.2-218.1
4%(质量)改性石墨烯/正十八烷28.427.122.9-214.5

Table 3

Thermal conductivity and relevant data of n-octadecane and composite phase change materials"

样品热扩散系数/(mm2/s)密度/(g/cm3)比热容/(J/(g·K))热导率/(W/(m·K))
正十八烷0.1370.7771.6580.177
1%(质量)改性石墨烯/正十八烷0.1840.7712.0070.285
2%(质量)改性石墨烯/正十八烷0.2300.7661.9730.338
3%(质量)改性石墨烯/正十八烷0.2660.7601.9340.391
4%(质量)改性石墨烯/正十八烷0.2780.7551.9500.409

Fig.8

Thermal conductivity and thermal diffusion coefficient of modified graphene/n-octadecane composite phase change materials with different mass fractions at 20℃"

Fig.9

Microstructure and morphology of modified graphene oxide/n-octadecane composite PCM"

1 Zhang P, Ma Z W, Wang R Z. An overview of phase change material slurries: MPCS and CHS[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 598-614.
2 Zhang Q, Wang H, Ling Z, et al. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability[J]. Solar Energy Materials and Solar Cells, 2015, 140: 158-166.
3 Zhang Z, Zhang N, Peng J, et al. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material[J]. Applied Energy, 2012, 91(1): 426-431.
4 Lin Y, Jia Y, Alva G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 2730-2742.
5 Liu L K, Su D, Tang Y J, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review[J]. Renewable & Sustainable Energy Reviews, 2016, 62: 305-317.
6 Karaman S, Karaipekli A, Sari A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2011, 95(7): 1647-1653.
7 Dao T D, Jeong H M. Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance[J]. Solar Energy Materials and Solar Cells, 2015, 137: 227-234.
8 Iwata H, Oodate M, Uyama Y, et al. Preparation of temperature-sensitive membranes by grafting polymerization onto a porous membrane[J]. J. Membrane Sci., 1991, 55: 119-124.
9 Okahata Y, Noguchi H, Seki T. Thermoselective permeation from a polymer-grafted capsule membrane[J]. Macromolecules, 1986, 19: 493-499.
10 Chu L Y, Park S H, Yamaguchi T, et al. Preparation of thermo-responsive core-shell microcapsule with a porous membrane and poly(N-isopropylacrylamide) gates[J]. J. Membrane Sci., 2001, 192: 27-37.
11 Peng T, Cheng Y L. Temperature-responsive permeability of porous PNIPAAm-g-PE membranes[J]. J. Appl. Polym. Sci., 1998, 70: 2133-2140.
12 Ito Y, Ochiai Y, Park Y S, et al. pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane[J]. J. Am. Chem. Soc., 1997, 119: 1619-1631.
13 Ito Y, Park Y S, Imanishi Y. Visualization of critical pH-controlled gating of a porous membrane grafted with polyelectrolyte brushes[J]. J. Am. Chem. Soc., 1997, 119: 2739-2755.
14 Chung D J, Ito Y, Imanishi Y. Preparation of porous membranes grafted with poly(spiropyran-containing methacrylate) and photo control of permeability[J]. J. Appl. Polym. Sci., 1994, 51: 2027-2040.
15 Tan S H, Mohamedali A, Kapur A, et al. A novel, cost-effective and efficient chicken egg IgY purification procedure[J]. Journal of Immunological Methods, 2012, 380(1/2): 73-76.
16 Marcet I, Laca A, Paredes B, et al. IgY isolation from a watery by-product obtained from an egg yolk fractionation process[J]. Food and Bioproducts Processing, 2011, (2): 87-91.
17 Dao T D, Jeong H M. A Pickering emulsion route to a stearic acid/graphene core-shell composite phase change material[J]. Carbon, 2016, 99: 49-57.
18 Mehrali M, Latibari S T, Mehrali M, et al. Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage[J]. Appl. Energy, 2014, 135: 339-349.
19 蔡迪, 李静, 焦乃勋. 纳米石墨烯片-正十八烷复合相变材料制备及热物性研究[J]. 物理学报, 2019, 68(10): 100502.
Cai D, Li J, Jiao N X. Preparation and thermophysical properties of graphene nanoplatelets-octadecane phase change composite materials[J]. Acta Physica Sinica, 2019, 68(10): 100502.
20 陈轩. 含纳米颗粒相变复合储能材料的强化传热机理与工艺研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
Chen X. Research on heat transfer mechanism and optimization of experiment process of nanoparticles containing phase change composite[D]. Harbin: Harbin Engineering University, 2016.
21 张金辉. 石蜡及其复合相变材料的热物性研究[D]. 青岛: 青岛科技大学, 2014.
Zhang J H. Thermophysical properties of paraffin wax and its composite phase change materials[D]. Qingdao: Qingdao University of Science and Technology, 2014.
22 Wu S, Li T X, Yan T, et al. High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 102: 733-744.
23 Tahani M, et al. Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid[J]. International Communications in Heat and Mass Transfer, 2016, 76: 358-365.
24 Alazmi A, Rasul S, Patole S P, et al. Comparative study of synthesis and reduction methods for graphene oxide[J]. Polyhedron, 2016, 116: 153-161.
25 Yuan K, Wang H, Liu J, et al. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance[J]. Solar Energy Materials & Solar Cells, 2015, 143(143): 29-37.
26 Stengl V, Bakardjieva S, Bakardjiev M, et al. Carborane functionalized graphene oxide, a precursor for conductive self-assembled monolayers[J]. Carbon, 2014, 67: 336-343.
27 周建伟, 程玉良, 王储备, 等. 硬脂酸/氧化石墨烯复合相变储热材料研究[J]. 化工新型材料, 2013, 41(6): 47-49.
Zhou J W, Cheng Y L, Wang C B, et al. Study on stearic acid/ graphene oxide composite phase-change for thermal storage[J]. New Chemical Materials, 2013, 41(6): 47-49.
28 王赫, 王建平, 王艳, 等. 加入改性石墨烯的聚甲基丙烯酸甲酯/正十八烷相变材料微胶囊的制备与表征[J]. 化工新型材料, 2014, 42(1): 118-121.
Wang H, Wang J P, Wang Y, et al. Preparation and characterization of microcapsules of graphite modified poly(methyl methacrylate)/n-octadecane phase change material[J]. New Chemical Materials, 2014, 42(1): 118-121.
29 陈素清, 黄国波, 鲍建设, 等. 石墨烯导热增强相变储能材料的制备及性能[J]. 新型炭材料, 2018, 33(3): 262-267.
Chen S Q, Huang G B, Bao J S, et al. Preparation and thermal properties of phase change material modified by a functionalized reduced graphene oxide[J]. New Carbon Materials, 2018, 33(3): 262-267.
30 刘焕炳. 聚乙二醇正十六烷基醚接枝氧化石墨烯相变材料的制备及性能研究[D].天津: 天津工业大学, 2018.
Liu H B. Preparation and properties of polyethylene glycol N-cetyl ether grafted go phase change materials[D]. Tianjin: Tianjin University of Technology, 2018.
31 杨志涛, 张军强, 宗冬冬, 等. SiO2改性石墨烯-石蜡复合相变乳液的制备及热性能[J]. 新能源进展, 2017, 5(2): 110-116.
Yang Z T, Zhang J Q, Zong D D, et al. Preparation and thermal properties of SiO2 modified graphene-paraffin composite phase change emulsion[J]. Advances in New and Renewable Energy, 2017, 5(2): 110-116.
32 Wang Y, Liu Z, Zhang T, et al. Preparation and characterization of graphene oxide-grafted hexadecanol composite phase-change material for thermal energy storage[J]. Energy Technology, 2017, 5(11): 2005-2014.
[1] Long TIAN, Ting LIU, Kening SUN. Research progress of graphene oxide membrane for water purification [J]. CIESC Journal, 2020, 71(9): 4112-4130.
[2] Yongsheng WANG, Xiaolin LAN, Tian QIU, Xinping ZHANG, Yingying WU, Li CHEN, Weixiang XU, Dongjie GUO, Zhengkang DUAN. Synthesis and characterization of copper-based graphene composite catalyst [J]. CIESC Journal, 2020, 71(6): 2889-2899.
[3] Dongyang MAO, Dan YANG, Jieping FAN. Preparation and properties of graphene oxide hybrid molecularly imprinted composite membranes [J]. CIESC Journal, 2020, 71(6): 2900-2911.
[4] Ju WANG, Shufeng NIU, Ying FEI, Hong QI. Fabrication and stability of GO/Al2O3 composite nanofiltration membranes [J]. CIESC Journal, 2020, 71(6): 2795-2803.
[5] Jingran NIU, Huining DENG, Wei ZHANG, Baisong HU, Shaofeng ZHANG. Regulation of support structure by TiO2 deposition and its effect on performance of GO membranes [J]. CIESC Journal, 2020, 71(6): 2850-2856.
[6] Yefeng LIU, Peng ZUO, Ruiqi LI, Weizhou JIAO, Ruixin WANG. Covalently supported polyoxometalate and its catalytic oxidative desulfurization of tetrahydrothiophene [J]. CIESC Journal, 2020, 71(4): 1627-1636.
[7] Huachao GUO, Bo YANG, Guojia HUANG, Qingyong XU, Shuang LI, Zhenling WU. Preparation and properties of polyvinylidene fluoride/graphene composites [J]. CIESC Journal, 2020, 71(4): 1881-1888.
[8] Yanjun XU, Zehai XU, Qin MENG, Chong SHEN, Rui HOU, Guoliang ZHANG. Preparation and performance of novel rGO/uCN composite nanofiltration membrane [J]. CIESC Journal, 2019, 70(9): 3565-3572.
[9] Chao XU, Yu XUE, Hongyue CHEN, Yi HU. Study on catalytic properties of porcine pancreatic lipase modified by chiral proline ionic liquids [J]. CIESC Journal, 2019, 70(6): 2221-2228.
[10] Yamin LIU, Lei PENG, Fengying SU, Xiangxiang WANG, Yizhen HUANG, Zaichun LIN, Xiaojing YU, Yishan PEI. Study of CO2 adsorption on amine functionalized graphene oxide porous materials [J]. CIESC Journal, 2019, 70(5): 2016-2024.
[11] Yucong SONG, Xiaoshu DING, Yahui YAN, Shufang WANG, Yanji WANG. Catalytic performance of graphene oxide composite metal catalyst in dimethyl carbonate synthesis [J]. CIESC Journal, 2019, 70(4): 1401-1408.
[12] Xiaoshi LIU, Deqiu ZOU, Ruijun HE, Xianfeng MA. Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions [J]. CIESC Journal, 2019, 70(3): 1188-1197.
[13] Zhengqi YAN, Jiangshan GAO, Xintao ZHANG, Fei NAN, Yan HE. Acid reduction of graphene oxide and performance of supercapacitor [J]. CIESC Journal, 2019, 70(12): 4881-4888.
[14] Miaomiao LUO, Ning GUO, Yi XU, Daoping LIU. Effects of graphene oxide on crystallization behavior of VS55 during cooling and warming [J]. CIESC Journal, 2019, 70(1): 370-378.
[15] Dehui LEI, Tongjiang PENG, Hongjuan SUN, Guangping TANG, Jianzhao YANG, Yazhou REN, Lili WANG. Influence of reduction temperature of graphene oxide on cross sensitivity between humidity and formaldehyde [J]. CIESC Journal, 2019, 70(1): 309-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HAN Jin, ZHU Tong, IMAI Tsuyoshi, XIE Liyang, XU Chenghai, NOZAKI Tsutomu. Solubilization of excess sludge by high speed rotary disk[J]. CIESC Journal, 2008, 59(2): 478 -483 .
[2] WU Bin, XING Yuming, XU Weiqiang. Numerical investigation of electronic thermal control unit with foam composite phase change material[J]. CIESC Journal, 2010, 61(10): 2540 -2545 .
[3] XU Li, WANG Shichang , WANG Yuxin, LING Yi. HEAT-TRANSFER COEFFICIENTS OF FALLING FILM HORIZONTAL-TUBE EVAPORATOR[J]. CIESC Journal, 2003, 54(3): 299 -304 .
[4] ZHANG Qiang, LI Shurong, LEI Yang, ZHANG Xiaodong. Second exploitation of dynamic optimization problems with control switching structure[J]. CIESC Journal, 2011, 62(8): 2129 -2134 .
[5] Zheng Hanyong;Bu Jianjie(Handan Purification Equipment Research Institute,Handan 056027). THE SUBMERGED JET REACTION PROCESS OF SULFUR HEXAFLUORIDE INTO MOLTEN LITHIUM[J]. , 1996, 47(6): 656 -662 .
[6] WU Changning, YAN Binhang, ZHANG Li, SHUANG Yue, JIN Yong, CHENG Yi. Analysis of key techniques and economic feasibility for one-step production of acetylene by coal pyrolysis in thermal plasma reactor
[J]. CIESC Journal, 2010, 61(7): 1636 -1644 .
[7] CHEN Yinfei;GE Zhonghua;LV Dewei. MgFe COMPLEX OXIDES FOR SO2 OXIDATIVE ADSORPTION [J]. , 2001, 52(5): 429 -433 .
[8] WU Meirong, ZHANG Rui, ZHOU Jun, XIE Xinxin, YONG Xiaoyu, YAN Zhiying, GE Mingmin, ZHENG Tao. Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria[J]. CIESC Journal, 2014, 65(5): 1602 -1606 .
[9] LIU Changjun, GUO Qiuting, YE Jingyun, SUN Kaihang, FAN Zhigang, GE Qingfeng. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6 -13 .
[10] WANG Ruirui, ZHAO Youjing, SHAO Mingfei, XIANG Xu, DUAN Xue. Recent progresses in water oxidation over layered double hydroxide catalysts[J]. CIESC Journal, 2016, 67(1): 54 -72 .