CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4696-4703.doi: 10.11949/0438-1157.20191151

• Separation engineering • Previous Articles     Next Articles

Comparison of absorption efficiency of three hydrogen sulfide absorbents and optimization of absorption conditions of potassium iodate system

Xue LYU(),Yue MOU,Yiwen MIU,Hanlu LIAO,Jiansu RAN,Jie ZHENG()   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
  • Received:2019-10-19 Revised:2019-11-18 Online:2020-10-05 Published:2019-12-02
  • Contact: Jie ZHENG;


Hydrogen sulfide is corrosive and toxic, and the use of absorbents to absorb hydrogen sulfide gas is an important desulfurization treatment. The absorption efficiency of different absorbent is different. The absorption efficiency of three different hydrogen sulfide absorbent, namely ferric chloride system, potassium iodate system and alkaline potassium ferricyanide system, was firstly compared. Based on this, the absorption parameters of potassium iodate system were optimized, and the effects of concentration, temperature, pH, gas flow rate and time on the hydrogen sulfide gas absorption efficiency were discussed. The optimum absorption conditions were obtained by orthogonal test: temperature 55℃, pH 6.01, H2S flow rate 0.3 L·min-1, absorption time 1 min, the third-order absorption efficiency of 8%(mass) potassium iodate is 51.56%. The results of this study provide a theoretical reference for the absorption of hydrogen sulfide and support for the study of indirect electrolysis process.

Key words: gas, absorption, optimization, hydrogen sulfide, absorption efficiency, potassium iodate

CLC Number: 

  • TQ 125.1


Hydrogen sulfide absorbent absorption experiment device"

Table 1

Orthogonal test design of hydrogen sulfide absorbent"









Absorption efficiency of three hydrogen sulfide absorbents"


Absorption efficiency of potassium iodate with different concentration"


Absorption efficiency of potassium iodate system at different temperatures"


Absorption efficiency of different pH potassium iodate systems"


Absorption efficiency of potassium iodate system at different hydrogen sulfide flow rates"


Absorption efficiency of potassium iodate system under different absorption time"

Table 2

Changes of pH before and after absorption in different concentrations of potassium iodate system"







Table 3

Orthogonal test results of potassium iodate system"

1 唐慧, 王泰人. 油田气净化脱酸技术探讨[J]. 现代化工, 2019, 39(S1): 85-88.
Tang H, Wang T R. Discussion on oilfield gas purification and deacidification technology[J]. Modern Chemical Industry, 2019, 39(S1): 85-88.
2 Claudia N O, Jason J L, Anton D V, et al. Selective removal of hydrogen sulfide from simulated biogas streams using sterically hindered amine adsorbents[J]. Chemical Engineering Journal, 2020, 379: 122349.
3 申梦瑶. 利用离子液体类吸收剂脱除焦炉煤气中硫化氢的研究[D]. 北京: 北京化工大学, 2018.
Shen M Y. Study on the removal of hydrogen sulfide in coke oven gas by ionic liquid based absorbents[D]. Beijing: Beijing University of Chemical Technology, 2018.
4 Asbel D H, Noora K, Pekka S, et al. Effect of H2S and thiophene on the steam reforming activity of nickel and rhodium catalysts in a simulated coke oven gas stream[J]. Applied Catalysis B: Environmental, 2019, 258: 117977.
5 张评, 冯权莉. 电解铝废气处理的研究进展[J]. 化工科技, 2018, 26(5): 63-67.
Zhang P, Feng Q L. Research progress on treatment of waste gas in electrolytic aluminum industry[J]. Science & Technology in Chemical Industry, 2018, 26(5): 63-67.
6 Liu X P, Wang B H, Wang D D, et al. Study on the desulfurization performance of metal-based low transition temperature mixtures: Removal of hydrogen sulfide and sulfur recovery[J]. Fuel Processing Technology, 2019, 193: 372-377.
7 Maryam D, Raheleh S, Alimorad R. Adsorption of hydrogen sulfide over a novel metal organic framework-metal oxide nanocomposite: TOUO-x (TiO 2 /UiO-66)[J]. Journal of Solid State Chemistry, 2019, 278: 120866.
8 Liu X P, Li J P, Wang R. Study on the desulfurization performance of hydramine/ionic liquid solutions at room temperature and atmospheric pressure[J]. Fuel Processing Technology, 2017, 167: 382-387.
9 沈鑫甫. 中学教师实用化学辞典[M]. 北京: 北京科学技术出版社, 2002: 190-191.
Shen X F. Dictionary of Practical Chemistry for Middle School Teachers[M]. Beijing: Beijing Science and Technology Press, 2002: 190-191.
10 Mizuta S, Kondo W, Fujii K, et al. Hydrogen production from hydrogen sulfide by the iron-chlorine hybrid process[J]. Industrial & Engineering Chemistry Research, 1991, 30(7): 1601-1608.
11 俞英, 王崇智, 赵永丰, 等. 氧化-电解法从硫化氢获取廉价氢气方法的研究[J]. 太阳能学报, 1997, (4): 53-61.
Yu Y, Wang C Z, Zhao Y F, et al. Study on cheap hydrogen from hydrogen sulfide by oxidization-electrolysis method[J]. Acta Energiae Solaris Sinica, 1997, (4): 53-61.
12 鄂利海, 雒怀庆, 栾耕时. Fe(III)盐溶液吸收法处理H2S气体的研究[J]. 抚顺石油学院学报, 2001, (1): 12-16.
E L H, Luo H Q, Luan G S. Process of H2S treatment using aqueous ferric salt solution absorption[J]. Journal of Liaoning Shihua University, 2001, (1): 12-16.
13 李海燕, 宋增红, 刘爱华, 等. 电解硫化氢制氢气和硫磺的影响因素研究[J]. 硫酸工业, 2018, (4): 40-43.
Li H Y, Song Z H, Liu A H, et al. Study on influence factors of hydrogen and sulphur by electrolysis of hydrogen sulfide[J]. Sulphuric Acid Industry, 2018, (4): 40-43.
14 Huang H Y, Shang J, Yu Y, et al. Chung. Recovery of hydrogen from hydrogen sulfide by indirect electrolysis process[J]. International Journal of Hydrogen Energy, 2019, 44: 5108-5113.
15 周秀华, 王其峰. 加碘盐中碘酸钾含量的简易化验[J]. 海湖盐与化工, 1994, (6): 42-45+47.
Zhou X H, Wang Q F. Simple assay of potassium iodate in iodized salt[J]. Journal of Salt Science and Chemical Industry, 1994, (6): 42-45+47.
16 Kalina D, Mass Jr E T. Indirect hydrogen sulfide conversion(Ⅰ): An acidic electrochemical process[J]. International Journal of Hydrogen Energy, 1985, 10(3): 157-162.
17 Kalina D, Mass Jr E T. Indirect hydrogen sulfide conversion(Ⅱ): A basic electrochemical process[J]. International Journal of Hydrogen Energy, 1985, 10(3): 163-167.
18 李秀玲, 赵朝成. 核桃壳质活性炭的制备及吸附恶臭气体的研究[J]. 环境科技, 2009, 22(6): 32-34.
Li X L, Zhao C C. Study on preparation of activated carbons from walnut shells and odor gas adsorption[J]. Environmental Science and Technology, 2009, 22(6): 32-34.
19 李秀玲, 辛磊, 赵朝成. KIO3改性炭基催化剂的制备及其吸附性能评价[J]. 炭素技术, 2019, 38(2): 52-57.
Li X L, Xin L, Zhao C C. Preparation and adsorption performance evaluation of carbon-based catalysts modified by KIO3[J]. Carbon Techniques, 2019, 38(2): 52-57.
20 马世昌. 化学物质辞典[M]. 西安: 陕西科学技术出版社, 1999: 591.
Ma S C. Dictionary of Chemical Substances[M]. Xi 'an: Shaanxi Science and Technology Press, 1999: 591.
21 Otto H L, Winand M. The preparation of Curie quantities of S35-labelled element sulphur[J]. The International Journal of Applied Radiation and Isotopes, 1961, 10: 130.
22 余丽. 基于丝网印刷电极硫化氢、重金属离子的快速检测[D]. 合肥: 合肥工业大学, 2013.
Yu L. Rapid detection of hydrogen sulfide and heavy metal ions based on screen-printed electrode[D]. Hefei: Hefei University of Technology, 2013.
23 徐后传. 碳材料修饰电极快速检测硫化氢和亚硝酸盐及其在食品检测中的应用研究[D]. 合肥: 合肥工业大学, 2015.
Xu H Z. Rapid electrochemical sensing of hydrogen sulfide and nitrite in food based on carbon material modified electrodes[D]. Hefei: Hefei University of Technology, 2015.
24 韩磊. 新型间接电解硫化氢铁系吸收液及电解池设计研究[D]. 北京: 中国石油大学(北京), 2016.
Han L. Design of a new type of indirect electrolytic hydrogen sulfide absorption liquid and electrolytic cell[D]. Beijing: China University of Petroleum (Beijing), 2016.
25 赵艳青, 张永春, 陈绍云, 等. 液态氧化法选择性脱除烟道气中硫化氢的研究[J]. 低温与特气, 2011, 29(3): 8-12.
Zhao Y Q, Zhang Y C, Chen S Y, et al. The study of selective removal H2S from flue-gas by wet air oxidation[J]. Low Temperature and Specialty Gases, 2011, 29(3): 8-12.
26 王凯, 王磊, 魏莉, 等. 新型硫化氢吸收剂试验研究[J]. 山东化工, 2017, 46(17): 27-28+31.
Wang K, Wang L, Wei L, et al. Experimental study on the new type of H2S absorption[J]. Shandong Chemical Industry, 2017, 46(17): 27-28+31.
27 张存胜, 王文娟, 苏海佳, 等. 改性活性炭脱除沼气中硫化氢的性能及其再生研究[J]. 现代化工, 2016, 36(12): 59-62.
Zhang C S, Wang W J, Su H J, et al. Desulfurization of biogas by modified activated carbon and its regeneration[J]. Modern Chemical Industry, 2016, 36(12): 59-62.
28 沈力. 聚合硫酸铁-硫酸铜溶液吸收硫化氢的研究[D]. 吉林: 吉林大学, 2014.
Shen L. The study on the absorption of hydrogen sulfide by polyferric sulphate-copper sulfate[D]. Jilin: Jilin University, 2014.
29 李发永, 曹作刚, 张海鹏, 等. 由硫化氢制取硫磺及氢气扩大实验研究[J]. 化工进展, 2001, (7): 38-41.
Li F Y, Cao Z G, Zhang H P, et al. Experimental study on transforming refinery acid tail gas into sulphur and hydrogen[J]. Chemical Industry and Engineering Progress, 2001, (7): 38-41.
30 陈凯, 史有刚, 高圣新, 等. 油水井酸化用硫化氢吸收剂的研制及性能[J]. 石油与天然气化工, 2010, 39(3): 226-229+179-180.
Chen K, Shi Y G, Gao S X, et al. Synthesis and evaluation of hydrogen sulfide scavenger for well acidizing[J]. Chemical Engineering of Oil & Gas, 2010, 39(3): 226-229+179-180.
31 董如何, 肖必华, 方永水. 正交试验设计的理论分析方法及应用[J]. 安徽建筑工业学院学报(自然科学版), 2004, (6): 103-106.
Dong R H, Xiao B H, Fang Y S. Theoretical analysis method and application of orthogonal experimental design[J]. Journal of Anhui Jianzhu University, 2004, (6): 103-106.
32 王艳, 张爱珍, 任春生. 正交试验设计与优化的理论基础与应用进展[J]. 分析试验室, 2008, 27(S2): 333-334.
Wang Y, Zhang A Z, Ren C S. The theoretical basis and application progress of orthogonal experimental design and optimization[J]. Chinese Journal of Analysis Laboratory, 2008, 27(S2): 333-334.
33 邓利民, 李世伟, 侯映天, 等. 两种Betti碱对硫化氢吸收性能研究[J]. 化学研究与应用, 2017, 29(12): 1909-1915.
Deng L M, Li S W, Hou Y T, et al. Preparation of two Betti alkalis and survey about absorption of hydrogen sulfide by betti alkalis[J]. Chemical Research and Application, 2017, 29(12): 1909-1915.
34 张永, 王学谦, 宁平, 等. 碳酸钠溶液吸收处理硫化氢试验研究[J]. 云南化工, 2006, (2): 32-34.
Zhang Y, Wang X Q, Ning P, et al. Study on the absorption of hydrogen sulfide by sodium carbonate solution[J]. Yunnan Chemical Technology, 2006, (2): 32-34.
[1] Zili YANG, Caiyun GAO, Feiran GONG, Xuyun YU, Yun YU, Tianxun CAI. Working pressures on performance of ultrasonic atomization liquid desiccant dehumidification system [J]. CIESC Journal, 2020, 71(S1): 129-135.
[2] Rong A, Liping PANG, Dongsheng YANG, Bin QI. Design and optimization of integrated thermal management system for high-speed aircraft [J]. CIESC Journal, 2020, 71(S1): 315-321.
[3] Gang XU, Liping PANG. Simulation and optimization of air supply system layout for special vehicle cabin [J]. CIESC Journal, 2020, 71(S1): 335-340.
[4] Junjie LU, Wei ZHANG, Fangmin XIE, Yongfeng JIAO. Performance analysis of gas film of adaptive cylindrical seal [J]. CIESC Journal, 2020, 71(S1): 346-354.
[5] Qianru ZHANG, Xu ZHANG, Wei YE, Chengqiang ZHI, Yixiang HUANG, Wenxuan ZHAO, Jun GAO. Analysis of velocity and concentration field characteristics of heavy gas leakage in large space [J]. CIESC Journal, 2020, 71(S1): 57-67.
[6] Xiufeng LIU, Shi ZHANG, Zhijie ZHOU, Hao ZHENG, Chengze WANG, Hongyuan SHI, Mengjie LI. Study on structure optimization of heat exchanger and evaluation index of heat transfer performance [J]. CIESC Journal, 2020, 71(S1): 98-105.
[7] Jiying WU, Yimin MA, Wensheng CAO. Performance of biogas engine driven air source heat pump system under variable conditions [J]. CIESC Journal, 2020, 71(8): 3789-3796.
[8] Lyuhong ZHANG, Haopeng MA, Xiaowei TANTAI, Na YANG. Study on the absorption of nitric oxide by benzoic acid-based deep eutectic solvents [J]. CIESC Journal, 2020, 71(8): 3644-3651.
[9] Shuangchen MA, Quan ZHOU, Jianzong CAO, Qi LIU, Wentong CHEN, Shuaijun FAN, Yakun YAO, Chenyu LIN, Caini MA. Modeling and simulation of wet desulfurization system dynamic process [J]. CIESC Journal, 2020, 71(8): 3741-3751.
[10] Yu FAN, Pengyun SONG, Hengjie XU. Study on startup operation of dry gas seal with steam lubrication [J]. CIESC Journal, 2020, 71(8): 3671-3680.
[11] Xin ZHUO, Minghui QIU, Ping LUO. Mass transfer performance and resistance analysis of chemical absorption of NOx based on ceramic membrane contactor [J]. CIESC Journal, 2020, 71(8): 3652-3660.
[12] Ruqi YAN, Xianzhi HONG, Xin BAO, Jie XU, Xuexing DING. Phase-distribution regularity and sealing performance of supercritical carbon dioxide dry gas seal [J]. CIESC Journal, 2020, 71(8): 3681-3690.
[13] Pengfei WU, Ke WANG, Jue ZHAO. Flow pattern and pressure drop on shell side of shell and plate heat exchanger under adiabatic state [J]. CIESC Journal, 2020, 71(7): 3042-3049.
[14] Guidong HUANG, Songyuan ZHANG, Zhong GE, Zhiyong XIE, Huajiang XIANG, Yinlian YAN, Zhipeng YUAN. Thermal performance study of organic flash cycle based on internal heat exchanger [J]. CIESC Journal, 2020, 71(7): 3080-3090.
[15] Erfu HUO, Yingchun LI, Shuai YANG, Ming FENG, Weiqin CHENG, Bonan WANG, Xinjun WEI. Study on separation process of dicyclohexyl ether by catalytic hydrogenation from cyclohexanol distillation residue [J]. CIESC Journal, 2020, 71(7): 3132-3139.
Full text



[1] GAO Pengfei, FAN Daidi, LUO Yan'e, MA Xiaoxuan, MA Pei, HUI Junfeng, ZHU Chenhui. Efficient and Comprehensive Utilization of Hemicellulose in the Corn Stover[J]. , 2009, 17(2): 350 -354 .
[2] FENG Xiangchun.


[J]. , 2004, 55(11): 1925 -1927 .
[3] . [J]. CIESC Journal, 2011, 62(6): 1742 -1748 .
[4] LI Weiwei, MA Xindong, RAN Dan, WANG Zhen, LU Jianjiang. Distribution of PAHs between soils and pine needles collected from typical areas of Xinjiang[J]. CIESC Journal, 2011, 62(11): 3263 -3268 .
[5] ZOU Zheng, XUAN Aiguo, WU Yuanxin, HE Jun, HE Jia. Preparation of nano Fe/SiO2 core-shell composite particles from copper/iron ore cinder and their microwave absorption properties[J]. CIESC Journal, 2009, 60(5): 1322 -1326 .

WANG Wenbo;WANG Aiqin


Preparation, swelling behavior and water-retention properties of superabsorbent based on guar gum

[J]. , 2008, 59(11): 2916 -2921 .
[7] YUE Hangbo1,DOU Yao1,HE Ming1,YIN Guoqiang2,CUI Yingde1,3 . Improvement of mechanical properties of protein-based bioplastics[J]. Chemical Industry and Engineering Progree, 2013, 32(07): 1591 -1597 .
[8] ZHANG Xian, LUO Caiwu, HUANG Denggao, LI An, LIU Juanjuan, CHAO Zisheng. Reaction mechanism of aldehydes and ammonia to form pyridine bases[J]. CIESC Journal, 2013, 64(8): 2875 -2882 .
[9] . CIESC Journal(HUAGONG XUEBAO)Vol.64 No.9 September 2013 Contents[J]. , 2014, 65(1): 0 .
[10] HAN Huaizhi, LI Bingxi, HE Yurong, SHAO Wei. Numerical simulation on flow and heat transfer characteristics in shell side of outward convex corrugated double-pipe heat exchangers[J]. CIESC Journal, 2014, 65(S1): 85 -94 .