化工学报

• • 上一篇    下一篇

沼气机驱动的风冷热泵系统变工况性能

吴集迎1,2, 马益民1,2, 曹文胜1,2   

  1. 1 集美大学机械与能源工程学院;
    2 福建省清洁燃烧与能源高效利用工程技术研究中心, 福建 厦门 361021
  • 收稿日期:2019-11-25 修回日期:2020-05-22 出版日期:2023-04-17 发布日期:2020-05-25
  • 通讯作者: 吴集迎(1964-),男,教授。
  • 作者简介:吴集迎(1964-),男,教授。
  • 基金资助:
    国家自然科学基金项目(51879117)

Performance of a biogas engine driven air source heat pump system under variable conditions

WU Jiying1,2, MA Yimin1,2, CAO Wensheng1,2   

  1. 1 Mechanical and Energy Engineering College of Jimei University,;
    2 Cleaning Combustion and Energy Utilization Research Center of Fujian Province,, Xiamen 361021, Fujian, China
  • Received:2019-11-25 Revised:2020-05-22 Online:2023-04-17 Published:2020-05-25

摘要: 为高效利用沼气资源并减轻环境污染,构建了基于沼气机驱动的风冷热泵能源综合利用实验装置,重点研究了蒸发温度、冷却水量、沼气机转速等参数对系统性能的影响。实验测试结果表明:冷凝器总负荷随蒸发温度及冷却水量的增加而增大,但增幅较小;回收的沼气机余热随蒸发温度的升高而降低,但降幅较小,通过增大冷却水量可以提高沼气机余热的回收率,同时也增大了系统总供热量;冷却水量对系统性能系数COP的影响不具有单调性,在同一工况下,存在一个最佳冷却水量;冷却水量对系统一次能源利用率PER的影响幅度不同,冷却水量大时,PER的增幅反而较小。实验工况下,系统COP值最高可达5.15,PER值最高可达1.68。

关键词: 再生能源, 热力学过程, 沼气机, 性能实验, 蒸发温度, 冷却水量

Abstract: To utilize the renewable biogas energy and reduce environmental pollution, a biogas engine driven air source heat pump based comprehensive energy utilization experimental device was established, and the focus of this study was effect of parameters such as evaporating temperature, cooling water flow rate and rotate speed of biogas engine etc. on performances of the system. Experiment results show that while total condenser load increases with rising evaporator temperature and cooling water flow rate, the rate of increase is small. The recovered biogas engine waste heat decreases with rising evaporator temperature although the rate of decrease is not large, but cooling water flow rate increase can improve the recovered rate of biogas engine waste heat and the total heating capacity of the system at the time. Effect of cooling water flow rate on system coefficient of performance (COP) is not monotonic, and there exists an optimum cooling water flow rate under certain working conditions. Different cooling water flow rate has different effect on primary energy ratio (PER), and lesser PER increase corresponds larger cooling water flow rate. Under the experiment conditions, the maximum system COP and PER is 5.15 and 1.68 respectively.

Key words: renewable energy, thermodynamics process, biogas engine, performance experiment, evaporating temperature, cooling water flow rate

中图分类号: 

  • TU832.2
[1] Orhan S, Berrin T. Composition and source identification of deposits forming in landfill gas(LFG) engines and effect of activated carbon treatment on deposit composition[J]. Journal of Environment Management, 2013, 128:300-305.
[2] Orhan S, Berrin T. Effect of persistent trace compounds in landfill gas on engine performance during energy recovery:a case study[J]. Waste Management, 2013, 33:4-80.
[3] Zhai P M, Li L. Observed atmosphere and surface climate changes in the IPCC Fifth Assessment Report[J]. Progressus Inquisitiones De Mutatione Climatis, 2014,10(1):20-24.
[4] 陈业钢, 陈漫漫. 沼气燃烧系统的设计[J].中国给水排水, 2002, 18(7):65-66. Chen Y G, Chen M M. Burning system design of biogas[J]. China Water & Wastewater, 2002, 18(7):65-66.
[5] Wang Y W, Cai L, Shao X W, et al. Analysis on energy-saving effect and environmental benefit of a novel hybrid-power gas engine heat pump[J]. International Journal of Refrigeration, 2013, 36(1):237-246.
[6] Lazzarin R, Noro M. District heating and gas engine heat pump:Economic analysis based on a case study[J]. Applied Thermal Engineering, 2006, 26(2-3):193-199.
[7] 黄剑光, 赵兰萍, 陈汝东. 沼气型燃气热泵的可行性研究[J]. 流体机械, 2008, 36(2):80-82. Huang J G, Zhao L P, Chen R D. Feasibility studies about biogas engine driven heat pump[J]. Fluid Machinery, 2008, 36(2):80-82.
[8] J Y Wu, J Q Zeng. System construction and economic analysis of heat pump driven by biogas engine[C]//Proceedings of the 22nd International Congress of Refrigeration. Beijing, China, 2007:229-238.
[9] 王明涛, 杨昭, 陈轶光. 燃气机热泵的余热回收[J]. 农业机械学报, 2011, 42(1):35-38. Wang M T, Yang Z, Chen Y G. Recovery of waste heat of gas engine heat pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(1):35-38.
[10] Hepbasli A, Erbay Z, Icier F, et al. A review of gas engine driven heat pumps (GEHPs) for residential and industrial applications[J]. Renewable & Sustainable Energy Review, 2009, 13(1):85-99.
[11] 徐振军, 杨昭. 沼气机热泵复合式空调系统数值计算与能耗分析[J]. 农业机械学报, 2008, 39(9):118-121. Xu Z J, Yang Z. Numerical calculation and energy consumption analysis for air condition system driven by biogas engine[J].Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(9):118-121.
[12] 徐振军. 复合发电系统的沼气热泵供能特性研究[J].农业机械学报, 2011, 42(7):144-147. Xu Z J. Energy supply performance for biogas heat pump with generator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(7):144-147.
[13] Yang Z, Wang W B, Wu X. Thermal modeling and operating tests for a gas-engined driven heat pump working as a water heater in winter[J].Energy and Buildings, 2013, 58(3):219-226.
[14] 杨昭,程珩,张世钢,等.燃气压缩式热泵空调系统的实验研究[J].工程热物理学报,2003, 24(6):920-922. Yang Z, Cheng H, Zhang S G, et al. Experimental research of a compressive heat pump air-condition system driven by gas engine[J].Journal of Engineering Thermophysics, 2003, 24(6):920-922.
[15] Zhang R R, Lu X S, Li S Z, et al. Analysis on the heating performance of a gas engine driven air to water heat pump based on a steady-state model[J]. Energy Conversion & Management, 2005, 46(11/12):1714-1730.
[16] Sun Z G, Wang R Z, Sun W Z. Energetic efficiency of a gas engine-driven cooling and heating system[J]. Applied Thermal Engineering, 2004, 24(5-6):941-947.
[17] Sun Z G. A combined heat and cold system driven by an industrial engine[J]. Energy Conversion and Management, 2007, 48(2):366-369.
[18] Elgendy E, Schmidt J, Khalil A, et al. Performance of a gas engine heat pump (GEHP) using R410A for heating and cooling applications[J]. Energy, 2010, 35(12):4941-4948.
[19] Elgendy E, Schmidt J, Khalil A. Optimum utilization of recovered heat of a gas engine heat pump used for water heating at low air temperature[J]. Energy and buildings, 2014, 80(1):375-383.
[20] Elgendy E, Schmidt J, Khalil A, et al.Performance of a gas engine driven heat pump for hot water supply systems[J]. Energy, 2011, 36(5):2883-2889.
[21] 吴集迎. 沼气发动机驱动的热泵能源利用率计算[J].可再生能源, 2007, 25(5):49-52. Wu J Y. PER calculation of a biogas engine driven heat pump system[J]. Renewable Energy Resources, 2007, 25(5):49-52.
[22] 吴集迎. 沼气热泵系统设计及其经济性分析[J]. 农业机械学报, 2006, 37(12):114-117. Wu J Y. System design and economic analysis of absorption heat pump driven by biogas[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(12):114-117.
[23] Wu J Y, Ma Y M. Experimental Study on Performance of a Biogas Engine Driven Air Source Heat Pump System Powered by Renewable Landfill Gas[J].International Journal of Refrigeration, 2016, 62:19-29.
[24] 吴集迎, 马益民. 空气源沼气机热泵部分负荷性能[J]. 化工学报, 2014, 65(11):4551-4556. Wu J Y, Ma Y M. Partial load performance of biogas engine driven air source heat pump system[J]. CIESC Journal, 2014, 65(11):4551-4556.
[25] 马益民, 吴集迎. 以LFG为燃料的空气源沼气机热泵供热性能实验[J]. 化工学报, 2016,67(S2):370-377. Ma Y M, Wu J Y. Heating performance of landfill gas fueled biogas engine driven air source heat pump[J]. CIESC Journal, 2016,67(S2):370-377.
[26] 任勇, 杨昭. 内燃机独立供能系统的性能实验[J]. 天津大学学报, 2011, 4(1):29-34. Ren Y, Yang Z. Performance experiment of ICEEI system[J]. Journal of Tianjin University, 2011, 4(1):29-34.
[27] 刘焕卫, 杨昭, 王明涛. 燃气机热泵部分负荷特性的实验研究[J].热能动力工程, 2011, 26(5):523-527. Liu H W, Yang Z, Wang M T. Experimental study of the partial load characteristics of a gas-engine-driven heat pump[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26(5):523-527.
[28] Y G Chen, Z Yang, X Wu, et al. Theoretical simulation and experimental research on the system of air source energy independence driven by internal-combustion engine[J]. Energy and Buildings, 2011, 43(6):1351-1358.
[29] Sanaye S, Chahartaghi M. Thermal modeling and operating tests for the gas engine-driven heat pump systems[J]. Energy, 2010, 35(1):351-363.
[30] Sannye S, Asgari H. Thermal modeling of gas engine driven air to water heat pump systems in heating mode using genetic algorithm and Artificial Neural Network methods[J]. International Journal of Refrigeration, 2013, 36(8):2262-2277.
[31] Li Y L, Zhang X S. A novel parallel-type hybrid-power biogas engine-driven heat pump system[J].International Journal of Refrigeration, 2007,30(7):1134-1142.
[32] 李应林, 张小松, 殷勇高, 等. 燃气驱动冷热水机组变转速运行实验研究[J].东南大学学报, 2005,35(2):298-301. Li Y L, Zhang X S, Yin Y G, et al. Experimental research on variable speed operation of cold-hot water unit driven by gas engine[J]. Journal of Southeast University, 2005, 35(2):298-301.
[33] 吴集迎, 马益民. 基于LFG的沼气机热泵系统配置与实验研究[J]. 化工学报, 2014, 65(S2):208-214. Wu J Y, Ma Y M. System configuration and experimental study on LFG based biogas engine driven heat pump[J]. CIESC Journal, 2014, 65(S2):208-214.
[34] 侯根富, 段常贵, 马最良. 风冷燃气机驱动压缩式热泵冷热水机组运行特性试验研究[J].暖通空调, 2001, 31(3):5-8 Hou G F, Duan C G, Ma Z L. Experiment of performance characteristics of a compression heat pump unit driven by a gas engine[J]. Heating Ventilating & Air Conditioning, 2001, 31(3):5-8
[1] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[2] 杜伯尧, 全贞花, 侯隆澍, 赵耀华, 任海波. 新型光伏直膨式太阳能/空气能多能互补热泵性能[J]. 化工学报, 2020, 71(S1): 368-374.
[3] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
[4] 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142.
[5] 侯中兰, 魏新利, 马新灵, 孟祥睿. 循环水流量对ORC余热发电系统性能影响的试验分析[J]. 化工学报, 2019, 70(9): 3283-3290.
[6] 朱计划, 陈姚, 丘秀莲, 黄宇明, 郑成, 杨伟. 微波辅助溶剂热法制备LiMn1-xMgxPO4/C正极材料[J]. 化工学报, 2019, 70(7): 2775-2785.
[7] 康丽霞, 麻晨露, 刘永忠. 混合供电系统中退役电池的模块化储能操作优化[J]. 化工学报, 2019, 70(2): 599-606.
[8] 怀英, 贾淑芹, 吴克难, 陈曦. 高能化学激光多物理场耦合数值模拟[J]. 化工学报, 2019, 70(11): 4298-4305.
[9] 刘展, 冯雨杨, 雷刚, 厉彦忠. 低温液氧贮箱晃动过程热力耦合特性[J]. 化工学报, 2018, 69(S2): 61-67.
[10] 余超群, 臧润清, 段振坤. 太阳能蒸汽喷射式制冷机性能[J]. 化工学报, 2018, 69(S2): 205-209.
[11] 王林, 何慧, 王占伟, 宋尊, 梁坤峰, 马爱华. 采用地下水预热新风的热泵空调系统的适用性[J]. 化工学报, 2018, 69(S2): 485-491.
[12] 王佳骏, 郎中敏, 于戈文, 吴刚强. CuO/H2O纳米流体的池沸腾传热及预测[J]. 化工学报, 2018, 69(7): 2944-2955.
[13] 徐俊芳, 赵耀华, 全贞花, 王会粉, 赵会刚, 王皆腾. 新型空气-水双热源复合热泵系统除霜特性及能耗[J]. 化工学报, 2018, 69(6): 2646-2654.
[14] 于洋, 刘培启, 王云磊, 冷闯, 赵一鸣, 王静娴, 胡大鹏. 高效气波冷凝装置流动及热力学特性[J]. 化工学报, 2017, 68(8): 3039-3048.
[15] 王岗, 全贞花, 赵耀华, 靖赫然, 佟建南. 太阳能-热泵复合供能系统[J]. 化工学报, 2017, 68(5): 2132-2139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!