化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 98-105.doi: 10.11949/0438-1157.20191189

• 流体力学与传递现象 • 上一篇    下一篇

换热器结构优化与换热性能评价指标研究

刘秀峰1(),张诗2(),周志杰2,郑浩2,王成泽2,时红远3,李梦杰3   

  1. 1.海军装备部驻武汉地区军事代表局驻武汉地区军事代表室,湖北 武汉 430000
    2.中国舰船研究设计中心,湖北 武汉 430000
    3.西安交通大学热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2019-10-11 修回日期:2019-10-26 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 张诗 E-mail:693284153@qq.com;13163285016@163.com
  • 作者简介:刘秀峰(1970—),男,硕士,高级工程师,693284153@qq.com

Study on structure optimization of heat exchanger and evaluation index of heat transfer performance

Xiufeng LIU1(),Shi ZHANG2(),Zhijie ZHOU2,Hao ZHENG2,Chengze WANG2,Hongyuan SHI3,Mengjie LI3   

  1. 1.Military Representation Office of Military Representative Bureau of Naval Equipment Department in Wuhan Area, Wuhan 430000, Hubei, China
    2.China Ship Development and Design Center, Wuhan 430000, Hubei, China
    3.MOE Key Laboratory of Thermal Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2019-10-11 Revised:2019-10-26 Online:2020-04-25 Published:2020-05-22
  • Contact: Shi ZHANG E-mail:693284153@qq.com;13163285016@163.com

摘要:

某运载器中冷却器存在若干问题:壳侧压力损失较大;采用的弓形折流板结构使得壳侧工质呈现出Z字形流动,在折流板后易形成流动死区,促使壳侧结垢,使得换热器总传热性能降低。提出了两种针对壳侧结构的强化换热设计方案。方案一为减少弓形折流板数量、增加折流板间距;方案二为采用螺旋折流板替换原有的弓形折流板。为验证文中采用的热力设计方法的准确性,根据文献中的实验结果针对弓形折流板和螺旋折流板管壳式换热器热力设计方法进行了验证,结果表明文中采用的热力设计方法得到的计算数据与实验结果的偏差在37%以内,满足工程设计需求。优化方案根据优化参数不同,其优化结果有所不同,基本存在以下规律:优化设计可使换热器管壳两侧总压降减小,但同时其换热性能也下降。因此,需要一个综合指标来进行评价。文中提出以换热量Q与换热器流动阻力引起功耗的比值作为综合性能评价指标。该指标表示换热系统克服换热器流动阻力消耗单位泵功下的换热量,其值越大,单位泵功下换热量越高,经济性越好。经过计算发现最优方案相对原始方案,综合评价指标提高了约22.2%。

关键词: 传热, 换热器, 设计, 实验验证, 评价指标, 优化

Abstract:

There are some problems in the cooler of a launch vehicle. Firstly, the pressure loss of the shell side is large. Secondly, the segmental baffle structure makes the working substance flow in Z-shape. It is easy to form a dead zone behind the baffle, which promotes scaling on the shell side and reduces the overall heat transfer performance of the heat exchanger. Two heat transfer enhancement schemes for shell-side structures are proposed in this paper. The first scheme is to reduce the number of segmental baffles and increase the baffle spacing. The second scheme is to replace the original baffles with helical baffles. In order to verify the accuracy of the thermodynamic design method adopted in this paper, the thermodynamic design method of segmental baffle and helical baffle shell-and-tube heat exchangers are verified according to the experimental results in literature. The results show that the deviation between the experimental results and the calculated data obtained by the thermodynamic design method in this paper is within 37%, which meets engineering requirement. According to different optimization parameters, the optimization results are different. There is basically a following rule: the optimal design can reduce the total pressure drop on both shell and tube sides of heat exchanger, but its heat transfer performance decreases at the same time. Therefore, a comprehensive index is needed for evaluation. In this paper, the ratio of heat transfer Q to power consumption caused by flow resistance of heat exchanger is proposed as a comprehensive performance evaluation index. This index indicates that exchanging heat quantity obtained by heat transfer system per unit pump power. The larger the value, the better the economy. After calculation, it is found that the comprehensive evaluation index of the optimal scheme is increased by about 22.2% compared with the original scheme.

Key words: heat transfer, heat exchanger, design, experimental validation, evaluation index, optimization

中图分类号: 

  • TQ 028.8
1 Stehlík P, Wadekar V V. Different strategies to improve industrial heat exchange[J]. Heat Transfer Engineering, 2002, 23(6): 36-48.
2 Bergles A. Heat transfer enhancement - the maturing of second-generation heat transfer technology[J]. Heat Transfer Engineering, 1997, 18(1): 47-55.
3 Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat & Mass Transfer, 2005, 48(9): 1797-1807.
4 Bergles A E. ExHFT for fourth generation heat transfer technology[J]. Experimental Thermal and Fluid Science, 2002, 26(2/3/4): 335-344.
5 过增元. 对流换热的物理机制及其控制: 速度场与热流场的协同[J]. 科学通报, 2000, 45(19): 2118-2122.
Guo Z Y. Mechanism and control of convective heat transfer—coordination of velocity and heat flow fields[J]. Science Bulletin, 2000, 45(19): 2118-2122.
6 Bell K J. Heat exchanger design for the process industries[J]. Journal of Heat Transfer, 2005, 126(6): 877-885.
7 Schlünder E U. Heat Exchanger Design Handbook[M]. Washington, D C: Hemisphere Publishing Corporation, 1983: 210-213.
8 Lutcha J, Nemcansky J. Performance improvement of tubular heat exchangers by helical baffles[J]. Chemical Engineering Research and Design, 1990, 68(3): 263-270.
9 Prithiviraj M, Andrews M J. Three dimensional numerical simulation of shell-and-tube heat exchangers (Part Ⅰ): Foundation and fluid mechanics[J]. Numerical Heat Transfer: Part A Applications, 1998, 33(8): 799-816.
10 Prithiviraj M, Andrews M J. Three-dimensional numerical simulation of shell-and-tube heat exchangers (Part Ⅱ): Heat transfer[J]. Numerical Heat Transfer: Part A Applications, 1998, 33(8): 817-828.
11 Kral D, Stehlik P, van der Ploeg H J, et al. Helical baffles in shell-and-tube heat exchangers (Part Ⅰ): Experimental verification[J]. Heat Transfer Engineering, 1996, 17(1): 93-101.
12 Selbas R, Ö Kızılkan, Reppich M. A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(4): 268-275.
13 Patel V K, Rao R V. Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique[J]. Applied Thermal Engineering, 2010, 30(11/12): 1417-1425.
14 何雅玲, 陶文铨. 强化单相对流换热的基本机制[J]. 机械工程学报, 2009, 45(3): 27-38.
He Y L, Tao W Q. Basic mechanism of enhancing heat transfer of single relative flow[J]. Journal of Mechanical Engineering, 2009, 45(3): 27-38.
15 何雅玲, 雷勇刚, 田丽亭, 等. 高效低阻强化换热技术的三场协同性探讨[J]. 工程热物理学报, 2009, 30(11): 1904-1906.
He Y L, Lei Y G, Tian L T, et al. Discussion on three field synergy of high efficiency and low resistance enhanced heat exchange technology[J]. Journal of Engineering Thermophysics, 2009, 30(11): 1904-1906.
16 雷勇刚, 楚攀, 何雅玲, 等. 螺旋通道内受限外流传热和阻力特性的数值模拟[J]. 热能动力工程, 2007, 22(6): 656-660.
Lei Y G, Chu P, He Y L, et al. Numerical simulation of heat transfer and resistance characteristics of constrained external flow in helical channel[J]. Journal of Engineering for Thermal Energy and Power, 2007, 22(6): 656-660.
17 Nasr M R J, Shafeghat A. Fluid flow analysis and extension of rapid design algorithm for helical baffle heat exchangers[J]. Applied Thermal Engineering, 2008, 28(11/12): 1324-1332.
18 Lutcha J, Nemcansky J. Performance improvement of tubular heat exchangers by helical baffles[J]. Chemical Engineering Research and Design, 1990, 68(3): 263-270.
19 Dong C, Chen Y P, Wu J F. Influence of baffle configurations on flow and heat transfer characteristics of trisection helical baffle heat exchangers[J]. Energy Conversion and Management, 2014, 88: 251-258.
20 Wang Q, Chen G, Chen Q, et al. Review of improvements on shell-and-tube heat exchangers with helical baffles[J]. Heat Transfer Engineering, 2010, 31(10): 836-853.
21 Wen J, Yang H Z, Wang S, et al. Numerical investigation on baffle configuration improvement of the heat exchanger with helical baffles[J]. Energy Conversion and Management, 2015, 89: 438-448.
22 Lei Y G, He Y L, Chu P, et al. Design and optimization of heat exchangers with helical baffles[J]. Chemical Engineering Science, 2008, 63(17): 4386-4395.
23 Lei Y G, He Y L, Li R, et al. Effects of baffle inclination angle on flow and heat transfer of a heat exchanger with helical baffles[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(12): 2336-2345.
24 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 310-315.
Yang S M, Tao W Q. Heat Transfer Science[M]. 4th ed. Beijing: Higher Education Press, 2006: 310-315.
25 Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368.
26 Gnielinski V. On heat transfer in tubes[J]. International Journal of Heat and Mass Transfer, 2013, 63: 134-140.
27 Stehlik P, Nemcansky J, Kral D. Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles[J]. Heat Transfer Engineering, 1994, 15(1): 55-65.
28 Tao W Q, He Y L, Wang Q W, et al. A unified analysis on enhancing single phase convective heat transfer with field synergy principle[J]. International Journal of Heat & Mass Transfer, 2002, 45(24): 4871-4879.
29 Fan J F, Ding W K, Zhang J F, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 33-44.
30 He Y L, Tang S Z, Tao W Q, et al. A general and rapid method for performance evaluation of enhanced heat transfer techniques[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118780.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[3] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[4] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[5] 贺鹏程, 庄莉, 胡亮, 刘刚, 王瑞琪, 包亚强. 板翅式换热器压力特性工程计算方法[J]. 化工学报, 2020, 71(S1): 172-178.
[6] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[7] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[8] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[9] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[10] 毛海涛, 王璐, 许志颖, 解万翠, 都健, 张磊. 基于分子表面电荷密度分布与机器学习的混合物设计方法研究[J]. 化工学报, 2020, 71(S1): 282-292.
[11] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[12] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[13] 徐刚, 庞丽萍. 特种车辆舱室送风系统布局仿真优化[J]. 化工学报, 2020, 71(S1): 335-340.
[14] 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345.
[15] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .