化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 83-89.doi: 10.11949/0438-1157.20191168

• 流体力学与传递现象 • 上一篇    下一篇

微尺度通道内R134a的冷凝传热实验研究

詹宏波1(),郑文远1,文涛2,张大林3()   

  1. 1.航空机电系统综合航空科技重点实验室,江苏 南京 211106
    2.香港理工大学,中国 香港
    3.南京航空航天大学航空宇航学院,江苏 南京 210016
  • 收稿日期:2019-10-10 修回日期:2019-10-20 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 张大林 E-mail:zhanhongbono1@126.com;zhangdalin@nuaa.edu.cn
  • 作者简介:詹宏波(1987—),男,博士,高级工程师,zhanhongbono1@126.com
  • 基金资助:
    则可将局部冷凝传热系数表述为干度、平均冷凝热通量和饱和压力的函数,以便于该结构微尺度通道工程计算

Experimental investigation on condensation heat transfer of refrigerant R134a in micro-scale channel

Hongbo ZHAN1(),Wenyuan ZHENG1,Tao WEN2,Dalin ZHANG3()   

  1. 1.Key Laboratory of Aviation Electromechanical Integration Technology, Nanjing 211106, Jiangsu, China
    2.Hong Kong Polytech University, Hong Kong, China
    3.College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • Received:2019-10-10 Revised:2019-10-20 Online:2020-04-25 Published:2020-05-22
  • Contact: Dalin ZHANG E-mail:zhanhongbono1@126.com;zhangdalin@nuaa.edu.cn

摘要:

建立采用射流冲击进行制冷剂冷却的冷凝传热实验系统,对当量直径为0.63 mm矩形微尺度通道内制冷剂R134a的冷凝传热特性进行研究。实验参数范围是制冷剂干度0~1,质量流率115~290 kg/(m2·s),饱和压力0.35~0.5 MPa,实验获得了不同工况下微尺度通道的局部冷凝传热系数,并分析了制冷剂各参数对冷凝传热的影响。实验结果表明:冷凝过程中沿制冷剂流动方向,局部冷凝传热系数会随着干度减小而减小;在一定饱和压力下,局部冷凝传热系数与局部热通量相对应;冷凝传热系数随着饱和压力减小而增大。基于实验数据,整理出适用于本实验工况下微尺度通道内R134a的冷凝传热计算公式。

关键词: 冷凝, 传热, 制冷剂R134a, 微尺度, 射流冲击, 两相流

Abstract:

A condensation heat transfer test system was built to investigate the condensation heat transfer characteristics of R134a flowing inside one multi-port extruded tube with the hydraulic diameters of 0.63 mm, and a jet impingement cooling method was used to condense superheated refrigerant. The experiments were performed at vapor quality between 0 and 1, mass flow rate of refrigerant between 115 and 290 kg/(m2·s), saturation pressure between 0.35 MPa and 0.5 MPa. The local condensation heat transfer coefficients of the tube under different working conditions were obtained, and the influences of several factors on condensation heat transfer were analyzed. The experimental results show that, in condensation process, the local condensation heat transfer coefficient will decrease with the decrease in vapor quality. At a certain saturation pressure, the condensation heat transfer coefficient and local heat flux are corresponding to each other. The condensation heat transfer coefficient will increase with the decrease in saturation pressure. On the basis of the experimental data, a new correlation is proposed to calculate condensation heat transfer coefficients of refrigerant R134a in the multi-port extruded tubes in experimental conditions.

Key words: condensation, heat transfer, refrigerant R134a, micro-scale, jet impingement, two-phase flow

中图分类号: 

  • TK 124

图1

射流冲击冷凝实验方案原理图"

图2

冷凝传热实验系统示意图"

图3

微尺度通道的横截面实物图"

图4

冷凝实验件实物图"

图5

冷凝实验件工作原理示意图"

图6

射流冲击传热系数的实验测量值与计算值比较"

图7

沿流动方向干度、局部冷凝传热系数、壁面温度和局部冷凝热通量的分布"

图8

平均冷凝传热系数随质量流率的变化"

图9

相同饱和压力下局部冷凝传热系数与局部热通量的关系曲线"

图10

由文献[15]中数据整理所得R134a的冷凝传热系数与局部热通量的关系曲线"

图11

不同饱和压力下局部冷凝传热系数随局部热通量变化曲线"

图12

实验测量值与经验公式计算值的比较"

1 Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16: 359-368.
2 Kays W M, London A L. Compact Heat Exchangers[M]. 3rd ed. New York: McGraw-Hill, 1984.
3 Copetti J B, Macagnan M H, Zinani F, et al. Flow boiling heat transfer and pressure drop of R-134a in a mini tube: an experimental investigation[J]. Experimental Thermal & Fluid Science, 2011, 35(4): 636-644.
4 Bertsch S S, Groll E A, Garimella S V. A composite heat transfer correlation for saturated flow boiling in small channels[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 2110-2118.
5 Zhang H Y, Li J M, Na L, et al. Experimental investigation of condensation heat transfer and pressure drop of R22, R410A and R407C in mini-tubes[J]. International Journal of Heat & Mass Transfer, 2012, 55(s13/14: 3522-3532.
6 Park J E, Vakili-Farahani F, Consolini L, et al. Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa[J]. Experimental Thermal & Fluid Science, 2011, 35(3): 442-454.
7 Wang L, Dang C, Hihara E. Experimental study on condensation heat transfer and pressure drop of low GWP refrigerant HFO1234yf in a horizontal tube[J]. International Journal of Refrigeration, 2012, 35(5): 1418-1429.
8 Sakamatapan K, Kaew-On J, Dalkilic A S, et al. Condensation heat transfer characteristics of R134a flowing inside the multiport minichannels[J]. International Journal of Heat and Mass Transfer, 2013, 64(Complete): 976-985.
9 Webb R L, Zhang M, Narayanamurthy R. Condensation heat transfer in small diameter tubes[C]//Proceedings of the 11th International Heat Transfer Conference. Kyongju, Korea, 1998: 403-408.
10 Koyama S, Kuwahara K, Nakashita K. Condensation of refrigerant in multi-port channel[C]//Proceedings of the 1st International Conference on Micro-channels and Mini-channels. Rochester, New York, 2003: 193-205.
11 Charun H. Thermal and flow characteristics of the condensation of R404A refrigerant in pipe minichannels[J]. International Journal of Heat & Mass Transfer, 2012, 55(9/10): 2692-2701.
12 Bohdal T, Charun H, Sikora M. Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels[J]. International Journal of Heat & Mass Transfer, 2011, 54(9): 1963-1974.
13 Chang Y P, Tsai R, Hwang J W. Condensing heat transfer characteristics of aluminum flat tube[J]. Applied Thermal Engineering, 1997, 17(11): 1055-1065.
14 Meyer J P, Dirker J, Adelaja A O. Condensation heat transfer in smooth inclined tubes for R134a at different saturation temperatures[J]. International Journal of Heat & Mass Transfer, 2014, 70(2): 515-525.
15 Oh H K, Son C H. Condensation heat transfer characteristics of R-22, R-134a and R-410A in a single circular microtube[J]. Experimental Thermal & Fluid Science, 2011, 35(4): 706-716.
16 Webb B W, Ma C F. Single-phase liquid jet impingement heat transfer[J]. Advances in Heat Transfer, 1995, 26(8): 105-217.
17 Younglove B A, Mclinden M O. An international standard equation of state for the thermodynamic properties of refrigerant 123 (2, 2-dichloro-1, 1, 1-trifluoroethane)[J]. Journal of Physical & Chemical Reference Data, 1994, 23(5): 731-779.
18 Sakamatapan K, Wongwises S. Pressure drop during condensation of R134a flowing inside a multiport minichannel[J]. International Journal of Heat & Mass Transfer, 2014, 75(4): 31-39.
19 Cooper M G. Heat flow rates in saturated nucleate pool boiling—a wide-ranging examination using reduced properties[J]. Advances in Heat Transfer, 1984, 16(2): 157-239.
[1] 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82.
[2] 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105.
[3] 张兵, 魏利平, 滕海鹏. 隔板式内循环流化床压力脉动信号递归分析[J]. 化工学报, 2020, 71(S1): 106-113.
[4] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[5] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[6] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[7] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[8] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[9] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[10] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[11] 黎义斌, 宋亚娟, 歹晓晖, 李正贵. 不同推进式桨叶对搅拌反应器内气液两相混合特性的影响[J]. 化工学报, 2020, 71(S1): 227-235.
[12] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[13] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[14] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[15] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .