化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 430-435.doi: 10.11949/0438-1157.20191111

• 能源和环境工程 • 上一篇    下一篇

土壤源热泵供暖间歇运行时间的计算分析

王刚(),赵琰   

  1. 河北科技大学建筑工程学院,河北 石家庄 050018
  • 收稿日期:2019-10-07 修回日期:2019-11-14 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 王刚 E-mail:wanggang978@163.com
  • 作者简介:王刚(1978—),男,硕士,讲师,wanggang978@163.com
  • 基金资助:
    河北省自然科学基金面上项目(E2019208191)

Calculation and analysis of soil source heat pumps intermittent heating operation time

Gang WANG(),Yan ZHAO   

  1. College of Architecture Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
  • Received:2019-10-07 Revised:2019-11-14 Online:2020-04-25 Published:2020-05-22
  • Contact: Gang WANG E-mail:wanggang978@163.com

摘要:

为了充分利用土壤热能,对热泵供热量、运行时间与系统性能之间的关系进行研究。通过对采暖房间建立逐时热平衡方程,推导出房间温度变化与时间关系的计算式。通过该式计算出不同情况下室内平均温度、热泵运行时间、停机时间、供热运行份额的数值,对5种运行方案进行模拟计算分析。结论如下:地下盘管长度设计计算中供热运行份额应根据热泵机组制热量计算得出。热泵制热量相同时时间周期(一次运行时间与停机时间之和)小,运行时间短,地下盘管出口平均水温高,热泵运行效率高,但是随着时间周期变小,室内平均温度下降,热舒适性降低。时间周期相同时热泵制热量越大,运行时间越短,地下盘管出口平均水温高,热泵运行效率高。根据这些特点可采用100%设计热负荷的热泵机组+20%~30%设计热负荷的辅助热源的形式进行热源的配置。

关键词: 间歇供热, 土壤源热泵, 供热运行份额, 数值模拟, 设计

Abstract:

In order to make full use of soil heat energy, the relationship between heat supply, running time and system performance was studied. By establishing the hourly heat balance equation of the room, the calculating formula on room temperature change and time was derived. The average indoor temperature, heat pump running time, downtime, and heating running share were calculated by this model, and the simulation calculation and analysis of five operating schemes were carried out.

Conclusion

in the calculation of underground coil length design, the heating running share should be calculated based on the heat pump unit s heat supply. When heat pump heat production is same, the time period (the sum of one running time and downtime) is small, the running time is short, the average water temperature of the underground coil outlet is high, and the heat pump operation efficiency is high, but as the time period becomes smaller, the average indoor temperature decreases, thermal comfort decreases. When the time period is the same, the heat pump unit s heat supply is bigger and the running time is shorter, the average water temperature of the underground coil outlet is higher, and the heat pump unit s efficient is higher. According to these characteristics, the heat source can be allocated in the form of an heat pump unit with a 100% heat load + an auxiliary heat source with 20%-30% heat load.

Key words: intermittent heating, soil source heat pump, heating operation share, numerical simulation, design

中图分类号: 

  • TU 831.1

表1

ΔT=24 h,tmin =16.5℃时各参数的数值"

供热负荷系数

室内温度

最大值/℃

室内平均温度/℃停机时间/h开机时间/h

供热运行

份额

1.0018.1717.376.8917.110.7130
1.0518.3617.467.6216.380.6827
1.1018.5317.558.2815.720.6549
1.1518.6917.638.9015.100.6292
1.2018.8417.719.4714.530.6055
1.2518.9817.7810.0014.000.5835
1.3019.1117.8510.4913.510.5631

表2

ΔT =12 h,tmin =16.5℃时各参数的数值"

供热负荷系数室内温度最大值/℃室内平均温度/℃停机时间/h开机时间/h供热运行份额
1.0017.3716.943.658.350.6958
1.0517.4616.994.037.970.6644
1.1017.5417.034.377.630.6358
1.1517.6217.074.697.310.6095
1.2017.6917.104.987.020.5853
1.2517.7617.145.246.760.5630
1.3017.8217.175.496.510.5423

表3

ΔT =8 h,tmin =16.5℃时各参数的数值"

供热负荷系数室内温度最大值/℃室内平均温度/℃停机时间/h开机时间/h供热运行份额
1.0017.0816.802.485.520.6898
1.0517.1416.832.735.270.6582
1.1017.2016.852.975.030.6293
1.1517.2516.883.184.820.6028
1.2017.3016.903.374.630.5785
1.2517.3416.933.554.450.5561
1.3017.3816.943.724.280.5353

图1

地下盘管出口水温随时间变化曲线"

表4

1天内热泵运行时的地下盘管出口平均水温"

时间平均水温/℃
方案1方案2方案3方案4方案5
第1天7.907.988.078.548.75
第2天7.697.837.958.198.28
第3天7.607.747.868.098.18
第4天7.547.687.818.038.11

图2

1天内热泵运行时的地下盘管出口平均水温"

1 高秀芝, 王沣浩, 戢坤池, 等. 热泵供暖技术发展现状及展望[J]. 制冷与空调, 2019, 19(5): 71-78+83.
Gao X Z, Wang F H, Ji K C, et al. Development status and prospects of heat pump heating technology [J]. Refrigeration & Air Conditioning, 2019, 19(5): 71-78+83.
2 何涛, 李博佳, 杨灵艳, 等. 可再生能源建筑应用技术发展与展望[J]. 建筑科学, 2018, 34(9): 135-142.
He T, Li B J, Yang L Y, et al. Application and prospect of renewable energy technologies in buildings [J]. Architecture Science, 2018, 34(9): 135-142.
3 Wang Z, Lin B R, Zhu Y X. Modeling and measurement study on an intermittent heating system of a residence in Cambridge shire [J]. Building and Environment, 2015, 92(10): 380-386.
4 Yuan Y P, Cao X L, Wang J Q. Thermal interaction of multiple ground heat exchangers under different intermittent ratio and separation distance [J]. Applied Thermal Engineering, 2016, 108(9): 277-286.
5 Xu B P, Zhou S X, Hu W J. An intermittent heating strategy by predicting warm-up time for office buildings in Beijing [J]. Energy & Buildings, 2017, 155(9): 35-42.
6 吴登海, 倪美琴, 冯杨杰, 等. 夏热冬冷地区土壤源热泵运行特性的研究[J]. 流体机械, 2015, 43(2): 60-65.
Wu D H, Ni M Q, Feng Y J, et al. Investigation on the summer operating characteristics of the GHP in the hot-summer and cold-winter zone [J]. Fluid Machinery, 2015, 43(2): 60-65.
7 陈颖, 丁广城, 杨敏. 热泵间歇制热及土壤热响应特性的研究[J]. 太阳能学报, 2011, 32(2): 257-261.
Chen Y, Ding G C, Yang M. Experimental investigation on thermal responsive characteristics and shift operation of heat pump [J]. Journal of Solar Energy, 2011, 32(2): 257-261.
8 杨卫波, 施明恒, 陈振乾. 土壤源热泵供冷供热运行特性的实验研究[J]. 东南大学学报(自然科学版), 2009, 39(2): 276-281.
Yang W B, Shi M H, Chen Z Q. Experimental study on operation characteristic of ground coupled heat pump operated in cooling and heating mode [J]. Journal of Southeast University (Natural Science Edition), 2009, 39(2): 276-281.
9 宋胡伟, 刘金祥, 陈小春, 等. 不同地区土壤温度及建筑负荷特性对地源热泵系统的影响[J]. 建筑科学, 2010, 26(8): 68-73.
Song H W, Liu J X, Chen X C, et al. Influences of different soil temperatures and building load characteristics on ground source heat pump system [J]. Architecture Science, 2010, 26(8): 68-73.
10 冯杨杰, 倪美琴, 吴登海, 等. 地埋管变区域运行对土壤源热泵系统性能的影响[J]. 供热制冷, 2018, (3): 54-56.
Feng Y J, Ni M Q, Wu D H, et al. Effect of the operation of the ground buried pipe variable area on the performance of soil source heat pumps [J] . Heating and Refrigeration, 2018, (3): 54-56.
11 Shang Y, Dong M, Li S F. Intermittent experimental study of a vertical ground source heat pump system [J]. Applied Energy, 2014, 136(9): 628-635.
12 刘杰, 万鹏, 郭健翔, 等. 太阳能-土壤源热泵联合供暖系统优化研究[J]. 热科学与技术, 2019, 18(2): 155-162.
Liu J, Wan P, Guo J X, et al. Optimization of combined solar-ground source heat pump heating system [J]. Thermal Science and Technology, 2019, 18(2): 155-162.
13 危日光, 刘中良, 李聪, 等. 太阳能-土壤源热泵示范系统运行特性分析[J]. 建筑技术, 2018, 49(5): 472-475.
Wei R G, Liu Z L, Li C, et al. Solar energy-ground source heat pump demonstration system performance characteristics analysis [J]. Construction Technology, 2018, 49(5): 472-475.
14 杨子旭, 吕伟华, 冉思源, 等. 空气-土壤源柔性热泵系统在寒冷地区小型建筑中的能耗[J]. 流体机械, 2018, 46(9): 75-79.
Yang Z X, Lü W H, Ran S Y, et al. Analysis of energy consumption of air-ground source flexible heat pump system in small buildings in cold regions [J]. Fluid Machinery, 2018, 46(9): 75-79.
15 Pupeikis D, Burlingis A, Stankevičius V. Required additional heating power of building during intermitted heating [J]. Journal of Civil Engineering and Management, 2010, 16(1): 141-148.
16 Yang J, Xu L H, Hu P F. Study on intermittent operation strategies of a hybrid ground-source heat pump system with double-cooling towers for hotel buildings [J]. Energy & Buildings, 2014, 76(6): 506-512.
17 贺平, 孙刚. 供热工程[M]. 北京: 中国建筑工业出版社, 2000: 9-20.
He P, Sun G. Heating Engineering [M]. Beijing: China Construction Industry Press, 2000: 9 -20.
18 Li Y R, Zhou J, Long E S. Experimental study on thermal performance improvement of building envelopes by integrating with phase change material in an intermittently heated room [J]. Sustainable Cities and Society, 2019, 38(4): 607-615.
19 王舒寒, 钟珂, 刘鑫, 等. 不同供暖时间比对间歇供暖房间内围护结构能耗的影响[J]. 建筑科学, 2018, 34(4): 41-47.
Wang S H, Zhong K, Liu X, et al. Effect of the ratio of heating time on interior building envelope in intermittent heating room [J]. Architecture Science, 2018, 34(4): 41-47.
20 袁丽婷, 钟珂, 袁浩波. 间歇供暖房间有效能耗影响因素分析[J]. 暖通空调, 2015, 45(10): 110-115+4.
Yuan L T, Zhong K, Yuan H B, et al. Influencing factors of effective energy consumption in intermittent heating rooms [J]. Journal of HV&AC, 2015, 45(10): 110-115+4.
21 胡文举, 刘琴, 金占勇, 等. 不同供暖模式下居住建筑热环境与能耗分析[J]. 暖通空调, 2017, 47(9): 120-124.
Hu W J, Liu Q, Jin Z Y, et al. Building thermal environment and energy consumption for residential building in different heating modes [J]. Journal of HV&AC, 2017, 47(9): 120-124.
22 关文吉. 供暖通风空调设计手册[M]. 北京: 中国建材工业出版社, 2016: 1140.
Guan W J. Design Manual for Heating and Ventilating Air Conditioning [M]. Beijing: China Construction Materials Industry Press, 2016: 1140.
23 中华人民共和国建设部. 地源热泵系统工程技术规范: GB 50366—2009 [S]. 北京: 中国建筑工业出版社, 2005.
Ministry of Construction of the People s Republic of China. Technical code for ground-source heat pump system: GB 50366—2009 [S]. Beijing: China Construction Industry Press, 2005.
24 周超. 竖直埋管换热器传热过程的数值模拟[D]. 重庆: 重庆大学, 2012.
Zhou C. Numerical simulation of heat transfer in a vertical ground heat exchanger [D]. Chongqing: Chongqing University, 2012.
25 郭二宝. 地埋换热器温度场数值模拟及试验研究[J]. 流体机械, 2016, 44(11): 61-66.
Guo E B. Numerical simulation and experimental research on the temperature field around ground-loop heat exchanger [J]. Fluid Machinery, 2016, 44(11): 61-66.
26 Li C, Guan Y L, Wang X. Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe in intermittent heating mode [J]. Journal of Geothermic, 2019, 79(5): 14-25.
27 章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 北京: 中国建筑工业出版社, 2007: 20-21.
Zhang X M, Ren Z P, Mei F M. Heat Transfer [M]. Beijing: China Construction Industry Press, 2007: 20-21.
28 Jung C C, Seung R L, Dae S L. Numerical simulation of vertical ground heat exchangers: intermittent operation in unsaturated soil conditions [J]. Computers and Geotechnics, 2011, 38(6): 949-958.
29 Ji Y C, Qian H, Zheng X H. Development and validation of a three-dimensional numerical model for predicting the ground temperature distribution [J]. Energy & Buildings, 2017, 140(6): 261-267.
30 Shang Y, Li S F, Li H J. Analysis of geo-temperature recovery under intermittent operation of ground-source heat pump [J]. Energy & Buildings, 2010, 43(6): 935-943.
[1] 王磊, 赵福云, 蔡阳, 汪维伟, 王云鹤, 杨国彪. 置换通风模式下多元对流室内热与污染物输运[J]. 化工学报, 2020, 71(S1): 142-148.
[2] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[3] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[4] 贺鹏程, 庄莉, 胡亮, 刘刚, 王瑞琪, 包亚强. 板翅式换热器压力特性工程计算方法[J]. 化工学报, 2020, 71(S1): 172-178.
[5] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[6] 毛海涛, 王璐, 许志颖, 解万翠, 都健, 张磊. 基于分子表面电荷密度分布与机器学习的混合物设计方法研究[J]. 化工学报, 2020, 71(S1): 282-292.
[7] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[8] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[9] 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345.
[10] 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105.
[11] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[12] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[13] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[14] 贾艳萍, 张真, 佟泽为, 王嵬, 张兰河. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801.
[15] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .