化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 397-403.doi: 10.11949/0438-1157.20191098
Dong WANG(),Yaru LIU,Zhuo CHEN,Zunli KOU,Yuehong LU
摘要:
基于一套已有的小型CO2水源热泵热水器实验台,运用不同的理论方法对其最佳充注量进行计算,通过实验研究不同充注量对系统性能的影响,并利用实验结果对理论计算结果的准确度进行验证。研究结果表明:小型CO2水源热泵热水器存在着最佳充注量,在此充注量条件下,系统的COPheat最大,实验系统的最佳充注量为270 g。当充注量减小为最佳值的89%时(230 g),COPheat降低10.8%,增大为最佳值的111%时(300 g),COPheat降低了2.6%,即充注量不足时,COPheat对充注量的变化更为敏感。此外,充注量增加会提高系统热水的出水量,但超过最佳值后,效果不明显。实验数据法和额定工况法均适用于本文所研究的CO2水源热泵热水器系统,最大误差不超过3.7%。本研究可以为小型CO2跨临界系统最佳充注量的确定及如何维持系统高效运行提供理论指导。
中图分类号:
1 | Park K J, Lee Y, Jung D. Performance of R170/R1270 mixture under air-conditioning and heat pumping conditions [J]. Journal of Mechanical Science and Technology, 2010, 24(4): 879-885. |
2 | Ju F J, Fan X W, Chen Y P, et al. Experiment and simulation study on performances of heat pump water heater using blend of R744/R290 [J]. Energy & Buildings, 2018, 169: 148-156. |
3 | 杨梦, 张华, 秦延斌, 等. 混合制冷剂R134a/R1234yf (R513A)与R134a热力学性能对比及实验[J]. 化工进展, 2019, 38(3): 1182-1189. |
Yang M, Zhang H, Qin Y B, et al. Thermodynamic performance comparison and experimental study of mixed refrigerant R134a/R1234yf(R513A) and R134a [J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1182-1189. | |
4 | Wang D, Liu Y R, Kou Z L, et al. Energy and exergy analysis of an air-source heat pump water heater system using CO2/R170 mixture as an azeotropy refrigerant for sustainable development [J]. International Journal of Refrigeration, 2019, 106: 628-638. |
5 | 梦照峰, 张华, 秦延斌, 等. R1234yf/R134a混合物在汽车空调中替代R134a的实验研究[J]. 化工学报, 2018, 69(6): 2396-2403. |
Meng Z F, Zhang H, Qin Y B, et al. Experimental study on R1234yf/R134a mixture as alternative to R134a in automobile air conditioner [J]. CIESC Journal, 2018, 69(6): 2396-2403. | |
6 | Tammaro M, Montagud C, Corberán J M, et al. Seasonal performance assessment of sanitary hot water production systems using propane and CO2 heat pumps [J]. International Journal of Refrigeration, 2017, 74: 224-239. |
7 | 何丽娟, 黄艳伟, 李虹琰. 双温低品位热驱动跨临界CO2-[emim][Tf2N]吸收制冷系统的性能[J]. 过程工程学报, 2017, 17(3): 626-631. |
He L J, Huang Y W, Li H Y. Hydrocyclone separation performance of an absorption refrigeration system driven by double low-quality energy using transcritical CO2-[emim][Tf2N] [J]. Chin. J. Process Eng., 2017, 17(3): 626-631. | |
8 | 寇宏侨, 罗会龙, 杜鸿儒, 等. 低温下提高CO2空气源热泵进水温度对系统性能的影响[J]. 化工学报, 2016, 67: 378-385. |
Kou H Q, Luo H L, Du H R, et al. Effects of inlet water temperature of air source carbon dioxide heat pump on system performance under low-temperature climate conditions [J]. CIESC Journal, 2016, 67: 378-385. | |
9 | 史敏, 贾磊, 张秀平, 等. CO2应用于我国工商制冷行业的适用性研究[J]. 制冷学报, 2016, 37(6): 97-103. |
Shi M, Jia L, Zhang X P, et al. Applicability research on CO2 application in Chinese industrial and commercial refrigeration industry [J]. Journal of Refrigeration, 2016, 37(6): 97-103. | |
10 | 武卫东, 贾松燊, 吴俊, 等. 以降压为目的的CO2混合工质制冷系统研究进展[J]. 化工进展, 2017, 36: 1969-1976. |
Wu W D, Jia S S, Wu J, et al. Research progress on refrigeration systems using CO2 mixture refrigerant to reduce its cycle pressure [J]. Chemical Industry and Engineering Progress, 2017, 36: 1969-1976. | |
11 | 代宝民, 刘圣春, 孙志利, 等. 机械过冷CO2跨临界制冷循环性能理论分析[J]. 制冷学报, 2018, 39(1): 13-19. |
Dai B M, Liu S C, Sun Z L, et al. Theoretical performance analysis of CO2 transcritical refrigeration cycle with mechanical subcooling [J]. Journal of Refrigeration, 2018, 39(1): 13-19. | |
12 | 赵宗彬, 宋昱龙, 包继虎, 等. 跨临界CO2空气源热泵性能研究[J]. 制冷学报, 2018, 39(2): 22-30. |
Zhao Z B, Song Y L, Bao J H, et al. Research on system performance of air-source transcritical CO2 heat pump [J]. Journal of Refrigeration, 2018, 39(2): 22-30. | |
13 | 姜林林, 柳建华, 张良, 等. 水平微细管内CO2流动沸腾换热特性[J]. 化工学报, 2018, 69(4): 1428-1436. |
Jiang L L, Liu J H, Zhang L, et al. Flow boiling heat transfer characteristics of CO2 in horizontal micro-tube [J]. CIESC Journal, 2018, 69(4): 1428-1436. | |
14 | 刘忠彦, 孙大汉, 金旭, 等. CO2管内流动沸腾换热模型评价研究[J]. 化工学报, 2019, 70(1): 56-64. |
Liu Z Y, Sun D H, Jin X, et al. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64. | |
15 | 丁国良, 黄冬平. 二氧化碳制冷技术[M]. 北京: 化学工业出版社, 2006. |
Ding G L, Huang D P. Refrigeration Technology of CO2 [M]. Beijing: Chemical Industry Press, 2006. | |
16 | 邹春妹, 岑继文, 刘培, 等. 跨临界二氧化碳热泵喷射循环实验[J]. 化工学报, 2016, 67(4): 1520-1526. |
Zou C M, Cen J W, Liu P, et al. Transcritical CO2 heat pump system with an ejector [J]. CIESC Journal, 2016, 67(4): 1520-1526. | |
17 | Baek C, Heo J, Jung J, et al. Optimal control of the gas-cooler pressure of a CO2 heat pump using EEV opening and outdoor fan speed in the cooling mode [J]. International Journal of Refrigeration, 2013, 36(4): 1276-1284. |
18 | Agrawal N, Bhattacharyya S. Experimental investigations on adiabatic capillary tube in a transcritical CO2 heat pump system for simultaneous water cooling and heating [J]. International Journal of Refrigeration, 2011, 34(2): 476-483. |
19 | Yang J L, Ma Y T, Li M X, et al. Modeling and simulating the transcritical CO2 heat pump system [J]. Energy, 2010, 35(12): 4812-4818. |
20 | Song Y L, Wang J, Cao F, et al. Experimental investigation on a capillary tube based transcritical CO2 heat pump system [J]. Applied Thermal Engineering, 2017, 112: 184-189. |
21 | Cho H, Ryu C, Kim Y, et al. Effects of refrigerant charge amount on the performance of a transcritical CO2 heat pump [J]. International Journal of Refrigeration, 2005, 28(8): 1266-1273. |
22 | Kim D H, Park H S, Kim M S. The effect of the refrigerant charge amount on single and cascade cycle heat pump systems [J]. International Journal of Refrigeration, 2014, 40: 254-268. |
23 | Pisano A, Martínez-Ballester S, Corberán J M, et al. Optimal design of a light commercial freezer through the analysis of the combined effects of capillary tube diameter and refrigerant charge on the performance [J]. International Journal of Refrigeration, 2015, 52: 1-10. |
24 | 王栋, 姜敬德, 任红梅, 等. 充注量对小型CO2 制冷系统影响的实验研究[J]. 低温工程, 2013, 191(1): 56-59. |
Wang D, Jiang J D, Ren H M, et al. Experimental study on performances of a small carbon dioxide refrigeration system at different refrigerant charge [J]. Cryogenic Engineering, 2013, 191(1): 56-59. | |
25 | 王栋, 李蒙, 武卫东, 等. 小型CO2 制冷系统最佳充注量的计算及实验研究[J]. 西安交通大学学报, 2013, 47(3): 80-84. |
Wang D, Li M, Wu W D, et al. Calculation and experiment study on optimum charge for a small CO2 refrigeration system [J]. Journal of Xi an Jiaotong University, 2013, 47(3): 80-84. | |
26 | Wang D, Lu Y H, Tao L R. Optimal combination of capillary tube geometry and refrigerant charge on a small CO2 water-source heat pump water heater [J]. International Journal of Refrigeration, 2018, 88: 626-636. |
27 | Sarkar J, Bhattacharyya S, Gopal M R. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications [J]. International Journal of Refrigeration, 2004, 27(8): 830-838. |
28 | Dmitriyev V I, Pisarenko V E. Determination of optimum refrigerant charge for domestic refrigerator units [J]. International Journal of Refrigeration, 1984, 7(3): 178-180. |
29 | 吴业正. 小型制冷装置设计指导[M]. 北京: 机械工业出版社, 2011. |
Wu Y Z. Design Guidance for Small Refrigeration Units [M]. Beijing: Machine Industry Press, 2011. | |
30 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 家用和类似用途热泵热水器: GB/T 23137—2008 [S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. Heat pump water heater for household and similar application: GB/T 23137—2008 [S]. Beijing: Standards Press of China, 2008. |
[1] | 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157. |
[2] | 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244. |
[3] | 韩建年, 王刚, 杨梅, 刘美佳, 高成地, 高金森. 费托蜡催化裂化反应生产清洁汽油的热力学分析[J]. 化工学报, 2020, 71(S1): 38-45. |
[4] | . 将CO2、R170和R41应用于跨临界空气源热泵热水器系统的性能对比研究[J]. 化工学报, 2020, 71(S1): 51-56. |
[5] | 张倩茹, 张旭, 叶蔚, 职承强, 黄奕翔, 赵文萱, 高军. 大空间重气泄漏下速度场、浓度场特性分析[J]. 化工学报, 2020, 71(S1): 57-67. |
[6] | 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82. |
[7] | 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105. |
[8] | 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561. |
[9] | 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008. |
[10] | 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625. |
[11] | 吴杰, 李嘉辉, 于燕梅, 于养信. 第Ⅲ族元素磷化物热力学性质理论研究[J]. 化工学报, 2020, 71(1): 192-199. |
[12] | 宋思婕,姚加,李浩然. 离子液体汽化焓的测量方法[J]. 化工学报, 2020, 71(1): 26-33. |
[13] | 李琳, 夏淑倩, 商巧燕, 马沛生. CO2-环烷烃/芳香烃界面张力的测定与估算[J]. 化工学报, 2020, 71(1): 254-264. |
[14] | 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145. |
[15] | 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157. |
|