化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 38-45.doi: 10.11949/0438-1157.20190694

• 热力学 • 上一篇    下一篇

费托蜡催化裂化反应生产清洁汽油的热力学分析

韩建年(),王刚(),杨梅,刘美佳,高成地,高金森   

  1. 中国石油大学(北京)重质油国家重点实验室,北京 102249
  • 收稿日期:2019-06-20 修回日期:2019-09-16 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 王刚 E-mail:2018213559@student.cup.edu.cn;wanggang@cup.edu.cn
  • 作者简介:韩建年(1992—),男,硕士研究生,2018213559@student.cup.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB0602504)

Thermodynamic study on fluid catalytic cracking of Fischer-Tropsch wax to produce clean gasoline

Jiannian HAN(),Gang WANG(),Mei YANG,Meijia LIU,Chengdi GAO,Jinsen GAO   

  1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
  • Received:2019-06-20 Revised:2019-09-16 Online:2020-04-25 Published:2020-05-22
  • Contact: Gang WANG E-mail:2018213559@student.cup.edu.cn;wanggang@cup.edu.cn

摘要:

费托蜡主要由链烷烃组成,不含硫、氮等杂原子,是生产清洁汽油的优质原料。由于缺少芳烃和环烷烃,费托蜡催化裂化过程需要强化异构化、芳构化反应以实现降低汽油馏分烯烃含量、保持高辛烷值的目标。对费托蜡为原料的催化裂化反应体系进行热力学分析,重点计算了不同温度下生成汽油馏分主要烃类的反应焓变和反应平衡常数。研究结果表明,以大分子链烷烃为主的费托蜡,其裂化吸热反应焓变约为80 kJ/mol,反应平衡常数随温度的升高而增大,高温有利于一次裂化反应。对于异构化反应,主要是大分子链烷烃裂化为烯烃,再由烯烃分子转化为异构烷烃,因此对于异构化反应,可以通过优化反应器促进汽油烯烃的转化。在考察温度范围内,烯烃环化反应平衡常数随温度升高而减小,环烷烃脱氢芳构化反应平衡常数随温度升高而增大,所以适宜的反应温度是制约进一步增加汽油中芳烃的重要因素。

关键词: 费托蜡, 催化裂化, 焓, 异构化, 芳构化, 燃料, 烷烃

Abstract:

Fischer-Tropsch (F-T) wax is mainly composed of long-chain paraffin without any sulfur or nitrogen and is well suited for producing clean gasoline. The contents of naphthenic and aromatic species of F-T wax are exceptionally low, a high gasoline fraction with a high-quality motor octane number and low olefin fraction is still problematic. Thus, the solution aims at enhancing isomerization and aromatization reactions in the fluid catalytic cracking (FCC) process. This paper shows that the thermodynamic analysis of the catalytic cracking reactions of F-T wax. Emphasis was given to the enthalpy change and equilibrium constant of the reaction to produce gasoline fraction at different temperatures. The results of the calculation indicate that the cracking of highly paraffinic F-T wax is endothermic (enthalpy change on reaction is about 80 kJ/mol), and the equilibrium constant and the equilibrium conversion from reactant to products increase with increasing temperature.In the case of isomerization, the equilibrium constant of n-paraffin in isomerization is extremely lower than olefin. It s speculated that olefin cracked from n-paraffin isoforms further to i-paraffin, reasonably. Therefore, a zoned reactor can be designed to promote the conversion of olefin. The equilibrium constant of n-paraffin cyclization is low at different temperatures and then occurrence of reaction is difficult. On the other hand, the value of the equilibrium constant of aromatization of naphthenic is high, as a consequence, suitable reaction temperature is the key to increase the aromatics in gasoline further.

Key words: Fischer-Tropsch wax, FCC, enthalpy, isomerization, aromatization, fuel, alkane

中图分类号: 

  • TE 626

图1

费托蜡1H NMR谱图"

图2

正三十一烷催化裂化反应产品分布"

表1

正三十一烷催化裂化反应产物烃组成分析"

柴油馏分质量分数/%汽油馏分质量分数/%气体组分质量分数/%
链烷烃57.70正构烷烃6.27碳一0.49
总环烷烃6.20异构烷烃41.94碳二2.72
单环芳烃17.70烯烃36.59碳三39.19
双环芳烃17.00环烷烃1.36碳四52.18
三环芳烃1.40芳烃13.84碳五5.42
总计100.00总计100.00总计100.00

图3

正三十一烷催化裂化生成汽油、液化气产品的主要反应网络"

表2

正三十一烷催化裂化产物组分?Hf?、?Gf?与温度T关联式"

Substance?Hf?=a1+b1T+c1T2?Gf?=a2+b2T+c2T2
a1b1×103c1×106a2b2×103c2×107
propane-80.700-90.50042.104-105.600264.747325.001
hexane-129.110-150.13573.459-170.450554.166503.033
octane-160.340-190.25194.492-212.690747.742623.610
nonane-175.880-210.359105.006-233.830844.766684.506
undecane-207.110-250.454125.997-276.1101038.900804.055
tricosane-394.060-491.726252.484-529.5202202.7801526.540
hentriacontane-518.730-625.480336.728-698.4602978.6302008.990
2-methylpentane-137.110-147.07272.785-177.680563.031483.129
2-methyloctane-184.630-204.075101.981-240.800854.744662.894
cyclohexane-818.200-167.055928.304-127.920520.324447.064
propylcyclohexane-141.000-211.840118.098-199.500808.737561.762
cyclohexylhexane-187.020-272.040149.591-262.1801100.050740.705
propene37.330-65.19128.08519.410136.848257.471
1-hexene-9.810-125.04759.735-44.220427.345433.515
1-nonene-56.530-185.489914.790-107.580718.380614.413
1-undecene-87.790-225.438112.353-149.840912.363735.384
1-dodecene-103.270-245.814123.039-170.9101009.320796.543
1-tricosene-274.670-466.945238.969-403.3102076.6801458.700
1-octacosene-352.560-567.497291.679-508.9202561.7901760.070
benzene101.400-72.13632.87881.510152.823265.222
propylbenzene40.970-130.67563.4634.890429.374440.117
hexylbenzene-6.770-191.05095.123-59.460719.974621.722
1-ethylnaphthalene127.100-120.98561.10393.650431.031383.179

表3

不同温度下烃类裂化反应焓变"

Reaction?rHT?/(kJ/mol)
350℃400℃450℃500℃550℃
n-C3101-C28=+C3080.9280.4579.9779.4778.96
n-C3101-C23=+C8079.5479.0978.6378.1577.65
n-C23=1-C12=+1-C11=79.5479.0978.6278.1477.64
n-C2301-C12=+n-C11079.5179.0678.5978.1077.60
1-C12=1-C9=+C3=79.6979.2278.7378.2377.71
i-C90i-C60+C3=79.3278.8378.3577.8677.36
cyclohexylhexanepropylcyclohexane+C3=78.9278.4577.9677.4576.93
cyclohexylhexanecyclohexane+1-C6=84.0483.2382.4481.6680.89
hexylbenzenepropylbenzene+C3=80.6880.2179.7279.2178.68
hexylbenzenebenzene+1-C6=93.5693.0992.6192.1291.61

表4

不同温度下费托蜡裂化反应平衡常数"

ReactionKp?
350℃400℃450℃500℃550℃
n-C3101-C28=+C304.5114.3938.8891.68193.87
n-C3101-C23=+C807.9424.8065.88153.10319.66
n-C23=1-C12=+1-C11=8.6527.0471.76166.91348.49
n-C2301-C12=+n-C1108.2525.7668.29158.64330.87
1-C12=1-C9=+C3=7.3823.1061.37142.81298.30
i-C90i-C60+C3=8.2925.8268.32158.41329.75
cyclohexylhexanepropylcyclohexane+C3=8.5526.4569.56160.44332.42
cyclohexylhexanecyclohexane+1-C6=0.913.038.4620.4944.11
hexylbenzenepropylbenzene+C3=5.8018.4049.49116.41245.42
hexylbenzenebenzene+1-C6=0.090.331.062.856.79

表5

不同温度下生成C6异构烷烃反应焓变"

Reaction?rHT?/(kJ/mol)
350℃400℃450℃500℃550℃
i-C90i-C60+C3=79.3278.8378.3577.8677.36
n-C60i-C60-6.35-6.24-6.14-6.03-5.94
1-C6=i-C60-135.96-136.21-136.40-136.53-136.59
cyclohexanei-C60-50.62-50.92-51.32-51.82-52.42

表6

不同温度下生成C6异构烷烃反应平衡常数"

ReactionKp?
350℃400℃450℃500℃550℃
i-C90i-C60+C3=8.2925.8268.32158.41329.75
n-C60i-C601.611.471.361.281.21
1-C6=i-C608674.191242.48231.8853.5614.73
cyclohexanei-C6066.5231.8916.889.675.91

表7

不同温度下环化及芳构化反应焓变"

Reaction?rHT?/(kJ/mol)
350℃400℃450℃500℃550℃
1-C9=propylcyclohexane-90.55-90.15-89.61-88.93-88.12
n-C90propylcyclohexane39.0439.8240.6641.5642.53
i-C90propylcyclohexane45.0545.7146.4447.2648.16
propylcyclohexanepropylbenzene211.33211.85212.09212.06211.76
hexylbenzenepropylbenzene+C3=80.6880.2179.7279.2178.68
hexylbenzeneethylnaphthalene164.32165.62166.74167.70168.49

表8

不同温度下环化及芳构化反应平衡常数"

ReactionKp?
350℃400℃450℃500℃550℃
1-C9=propylcyclohexane1434.79396.46131.4550.4821.86
n-C90propylcyclohexane0.250.450.731.141.70
i-C90propylcyclohexane0.190.360.631.051.65
propylcyclohexanepropylbenzene1.20×1032.42×1043.25×1053.15×1062.34×107
hexylbenzenepropylbenzene+C3=5.8018.4049.49116.41245.42
hexylbenzeneethylnaphthalene1.08×1031.12×1048.55×1045.13×1052.52×106
1 Amsel S, Maniatis A, Tavassoli M, et al. Stage and development possibilities of the Fischer-Tropsch-synthesis for the production of primary chemicals and feedstocks[J]. Food Chemistry, 1977, 190(11): 607-613.
2 Jager B. Developments in Fischer-Tropsch technology[M]//Studies in Surface Science and Catalysis.de Pontes M, Espinoza R L, Nicolaides C P,et al. Amsterdam: Elsevier, 1997: 107, 219-224.
3 孙予罕, 陈建刚, 王俊刚, 等. 费托合成钴基催化剂的研究进展[J]. 催化学报, 2010, 31(8): 919-927.
Sun Y H, Chen J G, Wang J G, et al. The development of cobalt-based catalysts for Fischer-Tropsch synthesis[J]. Chinese Journal of Catalysis, 2010, 31(8): 919-927.
4 Steynberg A P, Espinoza R L, Jager B, et al. High temperature Fischer-Tropsch synthesis in commercial practice[J]. Applied Catalysis A, General, 1999, 186(1) : 41-54.
5 Pendyala V R R, Jacobs G, Mohandas J C, et al. Fischer-Tropsch synthesis: effect of water over iron-based catalysts[J]. Catalysis Letters, 2010, 140(3/4): 98-105.
6 王林, 孔繁华, 刘晓彤, 等. 费托合成产物的加工利用技术探讨[J]. 炼油与化工, 2015, 26(5): 36-39.
Wang L, Kong F H, Liu X T, et al. Processing and utilization of products from Fischer-Tropsch synthesis[J]. Refining and Chemical Industry, 2015, 26(5): 36-39.
7 Miller S J, Shah N, Huffman G P. Conversion of waste plastic to lubricating base oil[J]. Energy & Fuels, 2005, 19(4): 1580-1586.
8 Kobayashi M, Saitoh M, Togawa S, et al. Branching structure of diesel and lubricant base oils prepared by isomerization/hydrocracking of fischer-tropsch waxes and α-olefins[J]. Energy & Fuels, 2009, 23(1): 513-518.
9 Leckel D, Liwanga-Ehumbu M. Diesel-selective hydrocracking of an iron-based Fischer-Tropsch wax fraction (C15-C45) using a MoO3-modified noble metal catalyst[J]. Energy & Fuels, 2006, 20(6): 2330-2336.
10 Hanaoka T, Miyazawa T, Shimura K, et al. Jet fuel synthesis from Fischer-Tropsch product under mild hydrocracking conditions using Pt-loaded catalysts[J]. Chemical Engineering Journal, 2015, 263(3): 178-185.
11 Gamba S, Pellegrini L A, Calemma V, et al. Liquid fuels from Fischer-Tropsch wax hydrocracking: isomer distribution[J]. Catalysis Today, 2010, 156(1/2): 58-64.
12 Mhike W, Focke W W, Mofokeng J P, et al. Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer-Tropsch wax and graphite[J]. Thermochimica Acta, 2012, 527(1/2): 75-82.
13 Molefi J A, Luyt A S, Krupa I. Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer-Tropsch paraffin wax[J]. Thermochimica Acta, 2010, 500(1/2): 88-92.
14 Luyt A S, Krupa I. Phase change materials formed by UV curable epoxy matrix and Fischer-Tropsch paraffin wax[J]. Energy Conversion and Management, 2009, 50(1): 57-61.
15 闫朋辉, 王宁波, 李大鹏, 等. Y分子筛处理方式对催化剂及费托蜡加氢裂化性能的影响[J]. 工业催化, 2014, 22(6): 422-427.
Yan P H, Wang N B, Li D P, et al. Effect of treatment methods of Y zeolite on catalysts and their hydrocracking performance for Fischer-Tropsch wax[J]. Industrial Catalysis, 2014, 22(6): 422-427.
16 Kang J, Ma W, Keogh R A, et al. Hydrocracking and hydroisomerization of n-hexadecane, n-octacosane and Fischer-Tropsch wax over a Pt/SiO2-Al2O3 catalyst[J]. Catalysis Letters, 2012, 142(11): 1295-1305.
17 Möller K, le Grange P, Accolla C. A two-phase reactor model for the hydrocracking of Fischer-Tropsch-derived wax[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3791-3801.
18 Aimáček P, Kubička D, Pospíšil M, et al. Fischer-Tropsch product as a co-feed for refinery hydrocracking unit[J]. Fuel, 2013, 105(8): 432-439.
19 Calemma V, Gambaro C, Parker W O, et al. Middle distillates from hydrocracking of FT waxes: composition, characteristics and emission properties[J]. Catalysis Today, 2010, 149(1): 40-46.
20 Eisenberg B, Fiato R A, Mauldin H, et al. Exxon s advanced gas-to-liquids technology[M]//Studies in Surface Science and Catalysis. Parmaliana A, Sanfilippo D, Frusteri F,et al. Amsterdam: Elsevier, 1998: 119, 943-948.
21 Espinoza R L, Steynberg A P, Jager B, et al. Low temperature Fischer-Tropsch synthesis from a Sasol perspective[J]. Applied Catalysis A: General, 1999, 186(1): 13-26.
22 Hodala J L, Jung J, Yang E, et al. Hydrocracking of FT-wax to fuels over non-noble metal catalysts[J]. Fuel, 2016, 185(12): 339-347.
23 Gambaro C, Calemma V, Molinari D, et al. Hydrocracking of Fischer-Tropsch waxes: kinetic modeling via LHHW approach[J]. AIChE Journal, 2011, 57(3): 711-723.
24 Dupain X, Krul R A, Makkee M, et al. Are Fischer-Tropsch waxes good feedstocks for fluid catalytic cracking units?[J]. Catalysis Today, 2005, 106(1/2/3/4): 288-292.
25 Lappas A A, Iatridis D K, Vasalos I A. Production of liquid biofuels in a fluid catalytic cracking pilot-plant unit using waxes produced from a biomass-to-liquid (BTL) process[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 531-538.
26 Abbot J, Wojciechowski B W. Catalytic cracking on HY and HZSM-5 of a Fischer-Tropsch product[J]. Industrial & Engineering Chemistry Product Research and Development, 1985, 24(4): 501-507.
27 刘伟成, 田志坚, 徐竹生. 正癸烷脱氢生成直链单烯烃的热力学分析[J]. 石油学报(石油加工), 2001, 17(4): 39-43.
Liu W C, Tian Z J, Xu Z S. A thermodynamic analysis on dehydrogenation of n-decane to decene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2001, 17(4): 39-43.
28 魏伟, 孙予罕, 钟炳. 正十二烷脱氢制直链十二单烯的热力学计算[J]. 石油化工, 2000, 29(8): 582-585.
Wei W, Sun Y H, Zhong B. Thermodynamic calculations for catalytic dehydrogenation of dodecane to dodecene[J]. Petrochemical Technology, 2000, 29(8): 582-585.
29 梁文杰. 重质油化学[M]. 东营: 石油大学出版社, 2000.
Liang W J. Heavy Oil Chemistry[M]. Dongying: Petroleum University Press, 2000.
30 Reynhardt E C. NMR investigation of Fischer-Tropsch waxes (Ⅲ): 13C and 1H study of oxidised hard wax[J]. Journal of Physics D: Applied Physics, 1985, 18(12): 2519-2528.
31 王松汉. 石油化工设计手册. 第1卷, 石油化工基础数据[M]. 北京: 化学工业出版社, 2002.
Wang S H. Handbook of Petrochemical Design. Volume1.Petrochemical Basic Data [M]. Beijing: Chemical Industry Press, 2002.
32 王峰, 任杰, 李永旺.密度泛函法计算C1~C14正构烃生成焓及C—C键裂解能[J]. 应用化学, 2009, 26(12): 1484-1488.
Wang F, Ren J, Li Y W. Enthalpies of formation and C—C bond dissociation energies of C1—C14 alkanes and alkyl radicals calculated via density functional theory methods[J]. Chinese Journal of Applied Chemistry, 2009, 26(12): 1484-1488.
33 陶海桥, 龙军, 周涵, 等. 2-甲基戊烷分子中C—H键和C—C键异裂的分子模拟[J]. 计算机与应用化学, 2010, 27(7): 871-874.
Tao H Q, Long J, Zhou H, et al. Molecular simulation studies on heterolysis of C—H and C—C bonds in 2-methylpentane [J]. Computers and Applied Chemistry, 2010, 27(7): 871-874.
34 Miguel A R, Ancheyta J. Detailed description of kinetic and reactor modeling for naphtha catalytic reforming[J]. Fuel, 2011, 90(12): 3492-3508.
[1] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[2] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[3] 王栋, 刘雅如, 陈卓, 寇遵丽, 鲁月红. 充注量对小型CO2水源热泵热水器性能的影响及其最佳值的确定[J]. 化工学报, 2020, 71(S1): 397-403.
[4] 韩超灵, 陈振乾. 添加碳纳米颗粒对磷氮双掺杂石墨烯电化学特性的影响[J]. 化工学报, 2020, 71(S1): 448-453.
[5] . 将CO2、R170和R41应用于跨临界空气源热泵热水器系统的性能对比研究[J]. 化工学报, 2020, 71(S1): 51-56.
[6] 贾亚宾, 郑旭, 高凯, 关军, 魏翩, 祁冰, 郑慧研. 某高校既有建筑室内人员相关VOCs目标污染物的实测分析[J]. 化工学报, 2020, 71(S1): 411-416.
[7] 许峻, 范怡平, 钱筱婕, 闫子涵, 卢春喜. 催化裂化提升管进料段喷嘴射流运动-扩散特性的分析[J]. 化工学报, 2020, 71(4): 1450-1459.
[8] 亢银虎, 张弋, 张朋远, 卢啸风. 二甲醚球形扩散火焰的振荡熄火动力学机理研究[J]. 化工学报, 2020, 71(4): 1469-1481.
[9] 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780.
[10] 毛宁, 王强, 杨妍, 徐敦信, 冯炜, 张金鹏, 白红存, 郭庆杰. 基于显微组分化学键特征的宁夏庆华煤热解特性及动力学分析[J]. 化工学报, 2020, 71(2): 811-820.
[11] 谢雨珩, 李智, 杨明磊, 杜文莉. 基于自适应采样算法的芳烃异构化代理模型[J]. 化工学报, 2020, 71(2): 688-697.
[12] 马金凤, 曾玺, 王芳, 康国俊, 武荣成, 许光文. 煤红外快速热解过程中床层对二次反应的影响[J]. 化工学报, 2020, 71(2): 736-745.
[13] 吴杰, 李嘉辉, 于燕梅, 于养信. 第Ⅲ族元素磷化物热力学性质理论研究[J]. 化工学报, 2020, 71(1): 192-199.
[14] 宋思婕,姚加,李浩然. 离子液体汽化焓的测量方法[J]. 化工学报, 2020, 71(1): 26-33.
[15] 李琳, 夏淑倩, 商巧燕, 马沛生. CO2-环烷烃/芳香烃界面张力的测定与估算[J]. 化工学报, 2020, 71(1): 254-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹相生, 付昆明, 钱栋, 朱兆亮, 孟雪征. 甲醇为碳源时C/N对反硝化过程中亚硝酸盐积累的影响 [J]. 化工学报, 2010, 61(11): 2939 -2943 .
[2] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[3] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[4] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[5] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[6] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[7] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[8] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[9] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[10] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .