化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 166-171.doi: 10.11949/0438-1157.20191093
Hang ZHANG1,3(),Liping PANG1(
),Ying WANG2,3
摘要:
以某型运输机蒸发循环制冷系统用冷凝器为研究对象,分析了运输机与直升机、小型通航飞机蒸发循环制冷系统工作环境的区别,应用Star CCM+软件进行了仿真建模,通过对冷凝器风道的流体仿真分析,阐述了飞行状态下引起蒸发循环制冷系统压力故障的原因,在此基础上提出了冷凝器风道优化方案,并应用流体仿真分析的方法,验证了优化方案的有效性,最后在该运输机上进行了试飞验证。
中图分类号:
1 | Dabm W J A. Technology horizons: a vision for science and technology during 2010-2030 [R]: AF/ST-TR-10-01-PR, 2010. |
2 | 王子熙. 美国能量优化飞机设计方法及关键技术[J]. 航空科学技术, 2014, 25(5): 7-12. |
Wang Z X. Design method and key technologies of US energy optimized aircraft [J]. Aeronautical Science and Technology, 2014, 25(5): 7-12. | |
3 | Jonqueres M. Air cycle environmental control system with vapor cycle system: US005918472A [P]. 1999-07-06. |
4 | 苏向辉, 许锋, 昂海松. 飞机环境控制系统的现状与未来[J]. 航空制造技术, 2002, (10): 40-42. |
Su X H, Xu F, Ang H S. Present situation and future of aircraft environmental control system [J]. Aviation Manufacturing Technology, 2002, (10): 40-42. | |
5 | Lehle W. Airbus A 330/340 environmental control system [R]. SAETechnical Paper, 1994. |
6 | Tipton R, Figliola R S, Ochterbeck J M. Thermal optimization of the ECS on an advanced aircraft with an emphasis on system efficiency and design methodology [R]. SAETechnical Paper, 1997. |
7 | Sprouse J. F-22 environmental control/thermal management fluid transport optimization [R]. SAE Paper 2000-01-2266, 2000. |
8 | Connell T C O, Lui C, Walia P, et al. A hybrid economy bleed, electric drive adaptive power and thermal management system for more electric aircraft [J]. SAE International Journal of Aerospace, 2010, 3: 168-172. |
9 | 高峰, 袁修干. 高性能战斗机组合式制冷系统的仿真及性能[J]. 低温工程, 2009, (6): 62-67. |
Gao F, Yuan X G. Simulation and performance of combined refrigeration system of high performance aircraft [J]. Cryogenics, 2009, (6): 62-67. | |
10 | 袁修干. 高性能军用机环境控制系统研究发展趋势的探讨[J]. 航空学报, 1999, (6): S1-S3. |
Yuan X G. Developing trend discussion of environmental control systems of high performance military aircraft [J]. Acta Aeronautica et Astronautica Sinica, 1999, (6): S1-S3. | |
11 | 牟笑迎, 吴玉庭, 马重芳. 蒸气压缩制冷在高热流电子器件冷却中的应用[J]. 制冷与空调, 2009, (12): 9-11. |
Mu X Y, Wu Y T, Ma C F. Application of vapor compression refrigeration to high heat flux microelectronics cooling [J]. Refrigeration and Air-conditioning, 2009, (12): 9-11. | |
12 | 李武奇, 唐伯清, 张均勇. 蒸汽压缩式制冷系统在航空中的应用[J]. 飞机设计, 2008,28(2): 73-76. |
Li W Q, Tang B Q, Zhang J Y. Application of the steam compression refrigeration system in aviation [J]. Aircraft Design, 2008,28(2): 73-76 | |
13 | Ebadian M A, Lin C X. A review of high-heat-flux heat removal technologies [J]. Journal of Heat Transfer, 2011,133(11): 110801. |
14 | Chanekar M. Vapor cycle system for the F-22 raptor [R]. SAE Paper 2000-01-2268, 2000. |
15 | Ayaz M, Masud J. Computational analysis and characterization of cockpit environmental control system of a fighter aircraft in humid environment [J]. Applied Mechanics & Materials, 2014, 629: 263-269. |
16 | 杨倩, 常士楠, 袁修干. 某型直升飞机环控系统制冷包设计[J]. 北京航空航天大学学报, 2002, 28(3): 283-286. |
Yang Q, Chang S N, Yuan X G. Design of refrigeration package for environmental control system of a helicopter [J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(3): 283-286. | |
17 | 夏亮, 林贵平. 蒸发制冷技术在直升机的应用[J]. 直升机技术, 2009, 10(1): 21-23. |
Xia L, Lin G P. Application of vapor-cycle refrigeration technology using on helicopter [J]. Helicopter Technique, 2009, 10(1): 21-23. | |
18 | 崔利, 薛浩. 直升机环控系统对比与展望[J]. 装备环境工程, 2010, 7(3): 62-65. |
Cui L, Xue H. Comparison and prospect of helicopter environmental control system [J]. Equipment Environmental Engineering, 2010, 7(3): 62-65. | |
19 | 黄文捷. 直升机环控系统性能分析与研究[J]. 直升机技术, 2002, (1): 22-24. |
Huang W J. Analysis and research on helicopter environmental control system performance [J]. Helicopter Technique, 2002, (1): 22-24 | |
20 | 吴晓丽, 张兴娟, 袁修干. 直升机蒸气循环制冷系统技术现状与展望[J]. 中国安全科学学报, 2004, 14(6): 57-59. |
Wu X L, Zhang X J, Yuan X G. Current status and perspective of cooling system of helicopter using steam cycling technique [J]. China Safety Science Journal, 2004, 14(6): 57-59. | |
21 | 彭孝天, 王苏明, 王晨臣. 直升机环境控制系统应用现状分析[J]. 海军航空工程学院学报, 2018, (2): 225-230. |
Peng X T, Wang S M, Wang C C. Analysis of application status of helicopter environmental control system [J]. Journal of Naval Aeronautical and Astronautical University, 2018, (2): 225-230. | |
22 | 李武奇. 航空环控系统热载荷分析及设计方案优化探讨[D]. 南京: 东南大学, 2009. |
Li W Q. Thermal load analysis and design optimization of aviation environmental control system [D]. Nanjing: Southeast University, 2009. | |
23 | 孙超. 机载蒸发循环仿真研究[D]. 南京: 南京航空航天大学, 2011. |
Sun C. Numerical investigations of the vapor cycle system [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. | |
24 | 王黎静, 王昭鑫, 何雪丽. 大型客机驾驶舱气流热仿真及舒适性评价[J]. 北京航空航天大学学报, 2010, (12): 1436-1452. |
Wang L J, Wang Z X, He X L. Airflow thermal simulation and comfortable evaluation of commercial airliner [J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, (12): 1436-1452. | |
25 | Xu X W, Sun H H, Hua G S, et al. CFD analysis and optimization of automobile radiator based on STAR-CCM+ [J]. International Journal of Plant Engineering and Management. 2017, 22(4): 212-221. |
26 | 张行, 周小康, 杨冰洁. 某民用直升机环控系统设计及仿真[C]//第31届全国直升机学术交流年会论文集.临汾: 中国航空学会直升机分会, 2015: 276-280. |
Zhang H, Zhou X K, Yang B J. Environment control system design and simulation of a certain civil helicopter [C]//Proceedings of the 31st National Helicopter Academic Exchange Annual Conference. Linfen: China Aviation Society Helicopter Branch, 2015: 276-280. | |
27 | 陈超. 基于STAR CCM+的建筑物风场数值模拟[D]. 沈阳: 沈阳建筑大学, 2012. |
Chen C. Based on the STAR CCM+ software building wind field numerical simulation [D]. Shenyang: Shenyang Jianzhu University, 2012. | |
28 | 阙雄才, 陈江平. 汽车空调实用技术[M]. 北京: 机械工业出版社, 2003: 173-176. |
Que X C, Chen J P. Practical Technology of Automotive Air Conditioning [M]. Beijing: Machinery Industry Press, 2003: 173-176. | |
29 | 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 199-208. |
Shou R Z, He H S. Environmental Control of Aircraft [M]. Beijing: Beihang University Press, 2004: 199-208. | |
30 | 贾玉红. 航空航天概论[M]. 第3版. 北京: 北京航空航天大学出版社. 2013: 226-232. |
Jia Y H, Introduction to Aerospace [M]. 3rd ed. Beijing: Beihang University Press, 2013: 226-232. |
[1] | 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82. |
[2] | 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89. |
[3] | 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105. |
[4] | 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128. |
[5] | 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157. |
[6] | 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165. |
[7] | 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186. |
[8] | 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211. |
[9] | 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219. |
[10] | 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244. |
[11] | 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37. |
[12] | 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321. |
[13] | 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334. |
[14] | 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345. |
[15] | 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367. |
|