化工学报

• •    下一篇

高分子絮凝剂处理高浓度化妆品原料生产废水研究

张兰河1, 万洒1, 陈子成1, 郭静波2, 朱遂一3, 贾艳萍1, 李正1   

  1. 1 东北电力大学化学工程学院, 吉林 吉林 132012;
    2 东北电力大学建筑工程学院, 吉林 吉林 132012;
    3 东北师范大学环境学院, 吉林 长春 130117
  • 收稿日期:2020-03-02 修回日期:2020-05-06 出版日期:2023-04-17 发布日期:2020-05-21
  • 通讯作者: 陈子成(1975-),男,博士,副教授,chenzicheng@126.com E-mail:chenzicheng@126.com
  • 作者简介:张兰河(1971-),男,博士,教授,zhanglanhe@163.com
  • 基金资助:
    吉林省科技发展计划项目(20180201016SF,20180101309JC)

Treatment of high-strength wastewater generated in cosmetics raw materials production using polymer flocculants

ZHANG Lanhe1, WAN Sa1, CHEN Zicheng1, GUO Jingbo2, ZHU Suiyi3, JIA Yanping1, LI Zheng1   

  1. 1 School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China;
    2 School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China;
    3 School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
  • Received:2020-03-02 Revised:2020-05-06 Online:2023-04-17 Published:2020-05-21

摘要: 化妆品原料生产过程中产生的废水水质成分复杂、有机物含量高、难降解,利用混凝工艺处理该废水能够减缓生化处理单元的负担,提高污水处理效率。为揭示无机高分子混凝剂混凝过程中污染物的去除机制和污泥性质的变化,本研究考察了不同的絮凝剂聚合氯化铝(PAC)、聚合硫酸铁(PFS)、聚合氯化铝铁(PAFC)和助凝剂聚丙烯酰胺(PAM)投加浓度对污染物去除率和污泥性质的影响。采用傅里叶变换红外光谱(FTIR)、X射线能谱(EDX)、扫描电镜(SEM)、热重分析仪(TGA)分析污泥絮体官能团、表面形貌、元素组成和热稳定性的变化,采用三维荧光光谱(3D-EEM)和超滤技术分析出水中有机物分子量的分布规律和有机物成分的变化,优化最佳混凝工艺运行条件。结果表明:进水中的天然有机物(NOM)荧光强度高,有机物分子量主要分布在>100 kDa和<3 kDa区间,其所占比例分别为22.89%和50.57%。当进水COD为6700~7500 mg/L时,在助凝剂PAM投加浓度为0.03 g/L,PAC、PFS和PAFC投加浓度分别为2.8 g/L、2.8 g/L和3.0 g/L的条件下,COD去除率分别为87.20%、79.89%和83.74%,出水浊度分别为2.54 NTU、9.3 NTU和5.51 NTU,NOM荧光强度大大减弱。其中,PAC+PAM对废水中有机物去除效果最好,出水有机物分子量主要分布在10~30 kDa和<3 kDa范围内,其所占比例分别为31.84%和25.92%,形成的混凝污泥具有较好的热稳定性,污泥表面蓬松、多孔网状结构。混凝工艺可吸附脂类大分子物质,提高了高浓度化妆品原料生产废水的可生化性。

关键词: 废水, 聚合物, 热解, 混凝性能, 混凝机理, 分子量

Abstract: The wastewater produced during the production of cosmetic raw materials has complex water quality components, high organic content, and is difficult to degrade. The use of coagulation technology to treat this wastewater can slow down the burden of biochemical treatment units and improve the efficiency of wastewater treatment. To reveal the mechanisms of pollutants removal and the change of sludge properties in the coagulation process using inorganic polymer coagulant, the effects of the dosage of poly aluminum chloride (PAC), poly ferric sulfate (PFS) and poly aluminum ferric chloride (PAFC) as coagulants and polyacrylamide (PAM) as coagulant aid on the removal efficiencies of pollutants and the sludge properties were investigated. The functional groups, surface morphology, elemental composition and thermal stability of sludge flocs were analyzed by using Fourier transform infrared spectroscopy (FTIR), X-ray energy spectroscopy (EDX), scanning electron microscopy (SEM) and thermogravimetric analyzer (TGA), respectively. The molecular weight distribution of organic compounds and the changes of organic composition in the wastewater were analyzed by three-dimensional fluorescence spectroscopy (3D-EEM) and ultrafiltration, respectively. The operation conditions of the coagulation process were then optimized based on the above results. It showed that natural organic matter (NOM) in the influent had high fluorescence intensity. The molecular weight distributions of organic compounds were higher than 100 kDa and lower than 3 kDa, which accounted for 22.89% and 50.57%, respectively. When influent COD was 6700~7500 mg/L and PAM concentration was 0.03 g/L, the removal efficiencies of COD were 87.20%, 79.89% and 83.74% and the effluent turbidity were 2.54 NTU, 9.3 NTU and 5.51 NTU under 2.8 g/L of PAC, 2.8 g/L of PFS and 3.0 g/L of PAFC, respectively. The fluorescence intensity of NOM decreased obviously. The removal of organic compounds was the highest when PAC and PAM were used simultaneously and the molecular weight of organic compounds in the effluent mainly distributed in the range of 10~30 kDa and <3 kDa with a proportion of 31.84% and 25.92%, respectively. The formed flocculation sludge had a good thermal stability, fluffy surface and porous network structure. The coagulation process can adsorb lipid macromolecules and improve the biodegradability of the high-strength wastewater generated in the cosmetics raw materials production.

Key words: wastewater, polymer, pyrolysis, coagulation performance, coagulation mechanism, molecular weight

中图分类号: 

  • X523
[1] Dotto J, Fagundes-Klen M R, Veit M T, et al. Performance of different coagulants in the coagulation/flocculation process of textile wastewater[J]. Journal of Cleaner Production, 2019, 208:656-665.
[2] Demichelis F, Fiore S, Onofrio M. Pre-treatments aimed at increasing the biodegradability of cosmetic industrial waste[J]. Process Safety and Environmental Protection, 2018, 118:245-253.
[3] 张婧, 翟洪艳, 季民. 混凝对藻源有机物的去除及其消毒副产物的控制[J]. 中国给水排水, 2016, 32(3):56-60. Zhang J, Zhai H Y, Ji M. Removal of algal organic matter and control of disinfection by-products by coagulation[J]. China Water & Wastewater, 2016, 32(3):56-60.
[4] Verma A K, Dash R R, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters[J]. Journal of Environmental Management, 2012, 93(1):154-168.
[5] Saxena K, Brighu U, Choudhary A. Parameters affecting enhanced coagulation:a review[J]. Environmental Technology Reviews, 2018, 7(1):156-176.
[6] Kumari M, Gupta S K. A novel process of adsorption cum enhanced coagulation-flocculation spiked with magnetic nanoadsorbents for the removal of aromatic and hydrophobic fraction of natural organic matter along with turbidity from drinking water[J]. Journal of Cleaner Production, 2020, 244:118899.
[7] El-Gohary F, Tawfik A, Mahmoud U. Comparative study between chemical coagulation/precipitation (C/P) versus coagulation/dissolved air flotation (C/DAF) for pre-treatment of personal care products (PCPs) wastewater[J]. Desalination, 2010, 252(1-3):106-112.
[8] Rana S, Suresh S. Comparison of different coagulants for reduction of COD from textile industry wastewater[J]. Materials Today:Proceedings, 2017, 4(2):567-574.
[9] 程拓, 徐斌, 朱贺振, 等. 南水北调丹江口水库原水有机物分子组成规律及其强化混凝处理的效能对比[J]. 环境科学, 2015, 36(3):898-904. Cheng T, Xu B, Zhu H Z, et al. Composition of NOM in raw water of Danjiangkou reservoir of South-to-North water diversion project and comparison of efficacy of enhanced coagulation[J]. Environmental Science, 2015, 36(3):898-904.
[10] 张新端. 分子量和组成成分在渗滤液处理工艺中的变化[J]. 再生资源与循环经济, 2019, 12(6):35-37. Zhang X D. The changes of MW and components in the leachate treatment process[J]. Recyclable Resources and Circular Economy, 2019, 12(6):35-37.
[11] 李磊, 李忠佩, 刘明, 等. 3DEEM和PARAFAC的猪场废水DOM组成特征分析[J]. 光谱学与光谱分析, 2017, 37(2):577-583. Li L, Li Z P, Liu M, et al. Characterizing dissolved organic matter (DOM) in wastewater from scale pig farms using three-dimensional excitation-emission matrices (3DEEM)[J]. Spectroscopy and Spectral Analysis, 2017, 37(2):577-583.
[12] 赵岳阳, 秦树林. PAC/PAFC混凝强化生活污水的预处理影响研究[J]. 浙江化工, 2013, 44(7):40-42. Zhao Y Y, Qin S L. Study on coagulation enhancing pretreatment of domestic sewage with PAC/PAFC[J]. Zhejiang Chemical Industry, 2013, 44(7):40-42.
[13] Lal K, Garg A. Effectiveness of synthesized aluminum and iron based inorganic polymer coagulants for pulping wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2019, 7(5):103204.
[14] Zhu G, Zheng H, Zhang Z, et al. Characterization and coagulation-flocculation behavior of polymeric aluminum ferric sulfate (PAFS)[J]. Chemical Engineering Journal, 2011, 178:50-59.
[15] Sun H, Jiao R, Xu H, et al. The influence of particle size and concentration combined with pH on coagulation mechanisms[J]. Journal of Environmental Sciences, 2019, 82:39-46.
[16] Sher F, Malik A, Liu H. Industrial polymer effluent treatment by chemical coagulation and flocculation[J]. Journal of Environmental Chemical Engineering, 2013, 1(4):684-689.
[17] 李敏, 宗栋良. 混凝中Zeta电位的影响因素[J]. 环境科技, 2010, 23(3):9-11. Li M, Zong D L. Influence factors on zeta potential in coagulation[J]. Environmental Science and Technology, 2010, 23(3):9-11
[18] 王慧云, 崔亚男, 张春燕. 影响胶体粒子zeta电位的因素[J]. 中国医药导报, 2010, 7(20):28-30. Wang H Y, Cui Y N, Zhang C Y. Influence factors on the zeta potential of colloid particle[J]. China Medical Herald, 2010, 7(20):28-30.
[19] 高宝玉, 魏锦程, 王燕, 等. 聚合铁复合絮凝剂处理地表水的性能研究[J]. 中国给水排水, 2006, 22(7):64-68. Gao B Y, Wei J C, Wang Y, et al. Study on polyferric-organic composite flocculants for treatment of surface water[J]. China Water & Wastewater, 2006, 22(7):64-68.
[20] Duan J, Gregory J. Coagulation by hydrolysing metal salts[J]. Advances in Colloid and Interface Science, 2003, 100:475-502.
[21] Wang P, Jiao R, Liu L, et al. Optimized coagulation pathway of Al13:effect of in-situ aggregation of Al13[J]. Chemosphere, 2019, 230:76-83.
[22] Davis C C, Edwards M. Coagulation with hydrolyzing metal salts:mechanisms and water quality impacts[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(4):303-347.
[23] Kadooka H, Kiso Y, Goto S, et al. Flocculation behavior of colloidal suspension by use of inorganic and polymer flocculants in powder form[J]. Journal of Water Process Engineering, 2017, 18:169-175.
[24] 王同成. PAC、PFS混凝剂去除微污染水体中PCBs效果研究[J]. 工业用水与废水, 2019, 50(1):34-39. Wang T C. Removal of PCBs in micro-polluted water by PAC and PFS coagulants[J]. Industrial Water & Wastewater, 2019, 50(1):34-39.
[25] 常玉广, 夏四清. 絮凝胶体颗粒的表面电位对絮凝行为的影响[C]//全国环境化学大会. 2009. Chang Y G, Xia S Q. Effect of surface potential of flocculent particles on flocculation behavior[C]//National Environmental Chemistry Conference. 2009.
[26] 任伟, 王栋, 王鹤霏, 等. 阴离子表面活性剂与铝盐复合絮凝去除苯甲酸[J]. 环境科学与技术, 2017, 40(11):132-137. Ren W, Wang D, Wang H F, et al. Synergistic flocculation of anionic surfactant and aluminum salt to remove benzoic acid[J]. Environmental Science & Technology, 2017, 40(11):132-137.
[27] 王学春, 方建华, 陈波水, 等. 几种脂肪酸甲酯的热解特性及动力学研究[J]. 中国油脂, 2015, 40(9):50-55. Wang X C, Fang J H, Chen B S, et al. Study on pyrolysis characteristics and kinetics of several fatty acid methyl esters[J]. China Oils and Fats, 2015, 40(9):50-55.
[28] 谢铭丰. C3-C5直链脂肪酸甲酯的热解实验及动力学模型研究[D]. 合肥:中国科学技术大学, 2012. Xie M F. Experimental study on pyrolysis and kinetic model of C3-C5 linear fatty acid methyl ester[D]. Hefei:University of Science and Technology of China, 2012.
[29] 张兰河, 赵倩男, 张海丰, 等. Ca2+对污泥硝化活性和絮凝沉降性能的影响[J]. 环境科学, 2019, 40(9):4160-4168. Zhang L H, Zhao Q N, Zhang H F, et al. Effect of Ca2+ on the nitrification activity and flocculation and sedimentation performance of sludge[J]. Environmental Science, 2019, 40(9):4160-4168.
[30] 贾艳萍, 张真, 佟泽为, 等. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4):1791-1801. Jia Y P, Zhang Z, Tong Z W, et al. Study on efficiency and mechanism of iron-carbon microelectrolysis treatment of dyeing wastewater[J]. CIESC Journal, 2020, 71(4):1791-1801.
[31] Zhang M, Wang Z, Li P, et al. Bio-refractory dissolved organic matter and colorants in cassava distillery wastewater:characterization, coagulation treatment and mechanisms[J]. Chemosphere, 2017, 178:259-267.
[32] 姚璐璐, 涂响, 于会彬, 等. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(2):411-416. Yao L L, Tu X, Yu H B, et al. Evaluation of dissolved organic matter removal in municipal wastewater based on fluorescence regional integration[J]. Chinese Journal of Environmental Engineering, 2013, 7(2):411-416.
[33] Hua G, Reckhow D A. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size[J]. Environmental Science & Technology, 2007, 41(9):3309-3315.
[1] 方书起, 石崇, 李攀, 白净, 常春. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报, 2020, 71(4): 1637-1645.
[2] 贾艳萍, 张真, 佟泽为, 王嵬, 张兰河. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801.
[3] 亓士超, 朱蓉蓉, 刘昕, 薛丁铭, 刘晓勤, 孙林兵. 乙二胺不同掺杂模式下多孔有机聚合物对CO2的吸附[J]. 化工学报, 2020, 71(4): 1666-1675.
[4] 李英泽, 杨路, 王琦, 杨思宇. BGL炉煤气化过程建模和模拟[J]. 化工学报, 2020, 71(3): 1174-1188.
[5] 朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化降解染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342.
[6] 林帝出, 杨佳薇, 邓玉莹, 戴敏, 郑西来, 彭昌盛. 滴定-凝胶法制备球形水凝胶吸附材料及其在废水处理中的应用[J]. 化工学报, 2020, 71(3): 914-922.
[7] 詹世平, 丁仕强, 王卫京, 李鸣明, 赵启成. 超临界流体技术制备生物可降解聚合物/药物纳米微粒研究进展[J]. 化工学报, 2020, 71(3): 923-935.
[8] 杨殿才, 潘宇涵, 黄群星, 蒋旭光, 王飞, 严建华. 废轮胎热解炭低温催化焦油重整制备富氢气体的研究[J]. 化工学报, 2020, 71(2): 642-650.
[9] 常诚, 冯连芳, 顾雪萍, 陈曦, 张才亮. 基于分子量分布指标的聚酯生产过程模拟方法[J]. 化工学报, 2020, 71(2): 708-714.
[10] 马金凤, 曾玺, 王芳, 康国俊, 武荣成, 许光文. 煤红外快速热解过程中床层对二次反应的影响[J]. 化工学报, 2020, 71(2): 736-745.
[11] 毛宁, 王强, 杨妍, 徐敦信, 冯炜, 张金鹏, 白红存, 郭庆杰. 基于显微组分化学键特征的宁夏庆华煤热解特性及动力学分析[J]. 化工学报, 2020, 71(2): 811-820.
[12] 吴涵, 陈滢, 刘敏, 王淑莹, 张伟. SBBR反应器中耐冷微生物的驯化与识别[J]. 化工学报, 2020, 71(2): 766-776.
[13] 任六一, 赵颂, 王志, 燕方正, 刘莹莹, 韩向磊, 王纪孝. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486.
[14] 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
[15] 蒲兴群, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 聚合物阵列微针及其在透皮给药系统的应用[J]. 化工学报, 2020, 71(1): 43-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!