化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3031-3041.doi: 10.11949/0438-1157.20191588

• 流体力学与传递现象 • 上一篇    下一篇

气固流化床外取热器内流动和换热特性分析

李建涛(),姚秀颖,刘璐,卢春喜()   

  1. 中国石油大学(北京)重质油国家重点实验室,北京 102249
  • 收稿日期:2019-12-27 修回日期:2020-04-06 出版日期:2020-07-05 发布日期:2020-05-18
  • 通讯作者: 卢春喜 E-mail:18811597071@163.com;lcx725@sina.com
  • 作者简介:李建涛(1993—),男,博士研究生,18811597071@163.com
  • 基金资助:
    国家自然科学基金项目(U1862202);中国石油大学(北京)科研基金项目(2462017YJRC011)

Analysis of flow and heat transfer characteristics in external heat extractor of gas-solid fluidized bed

Jiantao LI(),Xiuying YAO,Lu LIU,Chunxi LU()   

  1. State Key Laboratory of Heavy Oil, China University of Petroleum, Beijing 102249, China
  • Received:2019-12-27 Revised:2020-04-06 Online:2020-07-05 Published:2020-05-18
  • Contact: Chunxi LU E-mail:18811597071@163.com;lcx725@sina.com

摘要:

外取热器是维持催化裂化反应-再生系统热平衡和保持装置平稳运行的关键设备之一。外取热器的优化设计和合理调控,要求深入理解外取热器内的流动特性、换热特性及两者之间关系。在一套大型冷模热态实验装置上,分别考察了表观气速、颗粒质量流率对换热管附近的局部固含率和气泡频率、床层与换热管间传热系数的影响。结果表明:增加表观气速可以降低局部固含率、增加局部气泡频率、强化床层与换热管间换热;随着颗粒质量流率增加,局部固含率和局部气泡频率均增加;在较低表观气速下,增加颗粒质量流率不利于换热,而在较高表观气速下,传热系数随颗粒质量流率逐渐增加。不同流型下,气固流动特性对换热特性的影响不同。在鼓泡床流型下,过高的局部固含率不利于颗粒在换热表面的更新,增加换热管附近的局部气泡频率可以明显强化换热;而在湍流床流型下,换热管附近的局部固含率和气泡频率的增加,均使传热系数逐渐增大。建立了针对不同流型的换热经验关联式,预测值与实验值的平均相对偏差分别为6.9%和1.3%。

关键词: 流化床, 传热, 流体动力学, 经验关联

Abstract:

The external heat extractor is one of the key equipment to maintain the thermal balance of the catalytic cracking reaction system and keep the device running smoothly. It can process feed oils into products with higher value, such as gasoline, diesel, and olefins. The catalytic cracking reaction belongs to a parallel series reaction, and its desired products are the reaction intermediate. Meanwhile, a lot of heat is absorbed during reaction. The heat is mainly provided by coke-burning regeneration of the catalysts in regenerator. When processing heavy oils, the carbon amount on the catalysts will be increased, which can generate the extra heat during the catalysts coke-burning regeneration. A fluidized bed with external catalyst cooler can take the extra heat away to control the reaction temperature effectively and keep the heat balance between reaction and regeneration. The downflow external catalyst coolers have been widely used due to their high heat load and flexible adjustment. Both optimal design and effective control of downflow external coolers in industrial application require a deep understanding of gas-solid flow characteristics, heat transfer characteristics and their correlation. Therefore, a pilot scale cold mode experimental setup was built to investigate the effect of superficial gas velocity and solid mass flux on heat transfer, solid holdup and bubble frequency. The results showed that the instantaneous heat transfer coefficient presented the characteristics of low-frequency and high-amplitude as well as high-frequency and low-amplitude, and the former played a dominate role. The fluctuation periods of instantaneous heat transfer coefficient and instantaneous local solid holdup were both 25 s, which indicated that the heat transfer process between bed and heat transfer tube was directly related to the local solid holdup. Increasing superficial gas velocity can reduce local solid holdup, increase local bubble frequency, and enhance the heat transfer between bed and heat transfer surface. Moreover, local solid holdup and local bubble frequency were increased with solid mass flux. Heat transfer coefficient was decreased with solid mass flux at ug=0.1 m/s, while increased with solid mass flux at ug≥0.4 m/s. Influence of gas-solid flow characteristics on heat transfer characteristics was various under different flow patterns of fluidized beds. In bubbling bed flow pattern, local bubble frequency near the heat transfer tubes had a great influence on the heat transfer process, due to high local solid holdup impeded the renewal of particles on the heat exchange surface. In turbulent bed flow pattern, heat transfer coefficient was increased with local solid holdup and bubble frequency. Empirical correlations for predicting heat transfer coefficient at different flow patterns were built based on operation conditions and gas-solid flow characteristics. Their mean relative deviations between predicted value and experimental value were 6.9% and 1.3% respectively.

Key words: fluidized bed, heat transfer, hydrodynamics, empirical correlations

中图分类号: 

  • TQ 051.5

图1

实验装置流程"

图2

测点布置"

图3

典型的瞬时电压信号和两相结构"

图4

瞬时传热系数的波动特性"

图5

瞬时传热系数信号的功率谱密度"

图6

瞬时固含率的波动特性"

图7

固含率信号的功率谱密度"

图8

表观气速对时均传热系数的影响"

图9

催化剂质量流率对时均传热系数的影响"

图10

操作条件对时均固含率的影响"

图11

操作条件对气泡频率的影响"

图12

鼓泡床流型下流动参数对时均传热系数的影响"

图13

湍流床流型下流动参数对时均传热系数的影响"

图14

预测时均传热系数与实验时均传热系数对比"

10 Zhang Y R, Qi Y T, Li S X, et al. The technology of catalyst cooler in RFCC and its progress[J]. Journal of Fushun Petroleum Institute, 2002, 22(3): 22-26.
11 孙富伟. 催化裂化外取热器开发与研究进展[J]. 现代化工, 2015, 35(6): 29-33.
Sun F W. Advances in research and development of external catalyst cooler of FCC[J]. Modern Chemical Industry, 2015, 35(6): 29-33.
12 张荣克, 张蓉生. FCC装置下流式密相催化剂强化传热外取热器的开发和应用[J]. 石油炼制与化工, 2006, 37(4): 50-54.
Zhang R K, Zhang R S. Development and application of a dense phase FCC catalyst cooler with enhanced heat-transfer capability[J]. Petroleum Processing and Petrochemicals, 2006, 37(4): 50-54.
13 Yusuf R, Halvorsen B, Melaaen M. An experimental and computational study of wall to bed heat transfer in a bubbling gas-solid fluidized bed[J]. International Journal of Multiphase Flow, 2012, 42: 9-23.
1 卢春喜, 陈英, 李会鹏, 等. 炼油过程及设备[M]. 北京: 中国石化出版社, 2014: 85-89.
Lu C X, Chen Y, Li H P, et al. Refining Processes and Equipment[M]. Beijing: China Petrochemical Press, 2014: 85-89.
14 Chen J, Grace J, Golriz M. Heat transfer in fluidized beds: design methods[J]. Powder Technology, 2005, 150(2): 123-132.
15 Hilal N, Hastaoglu M. The relationship between particle properties and fluidizing velocity during fluidized bed heat transfer[J]. Advanced Powder Technology, 2004, 15(5): 583-594.
2 刘梦溪, 卢春喜, 时铭显. 催化裂化后反应系统快分的研究进展[J]. 化工学报, 2016, 67(8): 3134-3145.
Liu M X, Lu C X, Shi M X. Advances in quick separators of post-riser system in FRCC unit[J]. CIESC Journal, 2016, 67(8): 3134-3145.
16 Abid B, Ali J, Alzubaidi A. Heat transfer in gas-solid fluidized bed with various heater inclinations[J]. International Journal of Heat & Mass Transfer, 2011, 54(9): 2228-2233.
17 Hofer G, Schony G, Fuchs J, et al. Investigating wall-to-bed heat transfer in view of a continuous temperature swing adsorption process[J]. Fuel Processing Technology, 2018, 169: 157-169.
3 刘英杰, 杨基和, 蓝兴英, 等. RFCC化学汽提过程的模拟研究[J]. 化工学报, 2016, 67(8): 3245-3250.
Liu Y J, Yang J H, Lan X Y, et al. Numerical study on RFCC chemical stripping process [J]. CIESC Journal, 2016, 67(8): 3245-3250.
4 王飙, 徐春明, 高金森. 我国重质油加工方案的分析[J]. 当代化工, 2003, 32(2): 115-117.
Wang B, Xu C M, Gao J S. Analysis of heavy oil processing in China[J]. Contemporary Chemical Industry, 2003, 32(2): 115-117.
18 Kim S W, Kim S D. Heat transfer characteristics in a pressurized fluidized bed of fine particles with immersed horizontal tube bundle[J]. International Journal of Heat and Mass Transfer, 2013, 64: 269-277.
19 Lechner S, Merzsch M, Krautz H. Heat-transfer from horizontal tube bundles into fluidized beds with Geldart A lignite particles[J]. Powder Technology, 2014, 253: 14-21.
20 Yao X, Sun F, Zhang Y, et al. Experimental validation of a new heat transfer intensification method for FCC external catalyst coolers[J]. Chemical Engineering and Processing: Process Intensification, 2014, 75: 19-30.
21 Stefanova A, Bi H, Lim C, et al. Heat transfer from immersed vertical tube in a fluidized bed of group A particles near the transition to the turbulent fluidization flow regime[J]. International Journal of Heat and Mass Transfer, 2008, 51(7/8): 2020-2028.
5 赖周平. 重油催化裂化过程中的取热技术[J]. 炼油技术与工程, 1995, 25(6): 44-48.
Lai Z P. Technology of heat extraction in heavy oil catalytic cracking[J]. Refining Technology and Engineering, 1995, 25(6): 44-48.
6 王想平. RFCC装置外取热器芯子损坏原因探讨[J]. 石化技术与应用, 2001, 19(3): 161-163.
Wang X P. Damage reasons for tube bundle of outside heat remover in heavy oil catalytic cracking unit[J]. Petrochemical Technology &Application, 2001, 19(3): 161-163.
22 Yao X, Han X, Zhang Y, et al. Investigation of the heat transfer intensification mechanism for a new fluidized catalyst cooler[J]. AIChE Journal, 2015, 61(8): 2415-2427.
23 Mickley H, Fairbanks D. Mechanism of heat transfer to fluidized beds[J]. AIChE Journal, 1955, 1(3): 374-384.
24 Yao X, Han X, Zhang Y, et al. Systematic study on heat transfer and surface hydrodynamics of a vertical heat tube in a fluidized bed of FCC particles[J]. AIChE Journal, 2014, 61(1): 68-83.
25 Burki V, Hirschberg B, Tuzla K, et al. Thermal development for heat transfer in circulating fluidized beds[C]// AIChE Annual Meeting. St. Louis, MO, 1993.
26 Cai P, Jin Y, Yu Z Q, et al. Mechanism of flow regime transition from bubbling to turbulent fluidization[J]. AIChE Journal, 1990, 36(6): 955-956.
27 Cai P, Jin Y, Yu Z Q, et al. Mechanistic model for onset velocity prediction for regime transition from bubbling to turbulent fluidization[J]. Industrial & Engineering Chemistry Research, 2002, 31(2): 632-635.
28 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2007: 170-171.
Guo M S, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2007: 170-171.
29 梁咏诗. 催化剂汽提器气固流动不均匀性的实验与数值模拟[D]. 北京: 中国石油大学(北京), 2017.
Liang Y S. Experimental study and numerical simulation on hydrodynamic heterogeneity in fluidized catalyst strippers[D]. Beijing: China University of Petroleum, 2017.
7 姚秀颖, 卢春喜. 催化裂化再生催化剂取热技术研究进展[J]. 石油学报(石油加工), 2018, 34(2): 217-228.
Yao X Y, Lu C X. Advances in regenerated catalyst cooler of FCC[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(2): 217-228.
8 王春峰, 万德斌, 王宁, 等. 催化外取热器换热分析[J]. 当代化工, 2010, 39(5): 611-613.
Wang C F, Wan D B, Wang N, et al. Heat transfer analysis of external catalyst cooler in FCC[J]. Contemporary Chemical Industry, 2010, 39(5): 611-613.
9 李莉. 气控式外循环外取热技术的工业应用[J]. 炼油设计, 1999, 29(9): 11-17.
Li L. Commercial application of pneumatic controlled external catalyst coolers[J]. Petroleum Refinery Engineering, 1999, 29(9): 11-17.
10 张荫荣, 亓玉台, 李淑勋, 等. 重油催化裂化取热技术及其进展[J]. 抚顺石油学院学报, 2002, 22(3): 22-26.
30 Niu L, Huang Y H, Chu Z M, et al. Identification of mesoscale flow in a bubbling and turbulent gas-solid fluidized bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8456-8471.
31 Geldart D. Expansion of gas fluidized beds[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5802-5809.
32 Sau D C, Mohanty S, Biswal K C. Experimental studies and empirical models for the prediction of bed expansion in gas-solid tapered fluidized beds[J]. Chemical Engineering and Processing, 2010, 49(4): 418-424.
33 Wang J, Hoef M A, Kuipers J A. Coarse grid simulation of bed expansion characteristics of industrial-scale gas-solid bubbling fluidized beds[J]. Chemical Engineering Science, 2010, 65(6): 2125-2131.
34 Medrano J, Tasdemir M, Gallucci F, et al. On the internal solids circulation rates in freely-bubbling gas-solid fluidized beds[J]. Chemical Engineering Science, 2017, 172: 395-406.
35 Oke O, Lettieri P, Salatino P, et al. Numerical simulations of lateral solid mixing in gas-fluidized beds[J]. Chemical Engineering Science, 2014, 120: 117-129.
[1] 张兵, 魏利平, 滕海鹏. 隔板式内循环流化床压力脉动信号递归分析[J]. 化工学报, 2020, 71(S1): 106-113.
[2] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[3] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[4] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[5] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[6] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[7] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[8] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[9] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[10] 方黄峰, 刘瑶瑶, 张文彪. 基于LSTM神经网络的流化床干燥器内生物质颗粒湿度预测[J]. 化工学报, 2020, 71(S1): 307-314.
[11] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[12] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[13] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[14] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[15] 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . “十五”期间中国石油、石化产品需求旺盛 [J]. CIESC Journal, 2001, 52(11): 949 .
[2] 张同旺, 靳海波, 何广湘, 杨索和, 佟泽民. 采用压力传感技术测量鼓泡床中流体力学参数 [J]. 化工学报, 2004, 55(3): 476 -480 .
[3] 黄良军,唐军,蔡水洪,叶勤. 玉米浆浓度对甘油发酵的影响及动力学 [J]. CIESC Journal, 2001, 52(1): 88 -91 .
[4] 魏灵朝, 王福安, 刘怡. LB型节能催化剂上高温变换反应本征动力学及工业化测定 [J]. 化工学报, 2008, 59(9): 2232 -2240 .
[5] 郭雪岩, 戴韧, 王宏光. 基于Chimera网格的固定床反应器内局部流动模拟 [J]. 化工学报, 2008, 59(9): 2214 -2219 .
[6] 欧阳洁;李静海.

确定性颗粒轨道模型在流化床模拟中的研究进展

[J]. CIESC Journal, 2004, 55(10): 1581 -1592 .
[7] 李静海.

浅谈21世纪的化学工程

[J]. CIESC Journal, 2008, 59(8): 1879 -1883 .
[8] 张香文;姜凯;邹吉军;王莅;米镇涛.

双环戊二烯加压连续聚合制备高能量密度燃料

[J]. CIESC Journal, 2007, 58(10): 2658 -2663 .
[9] 邓先和,谭盈科,邓颂九. 多头与单头螺旋槽管传热准数方程关联法 [J]. CIESC Journal, 1989, 40(1): 18 -27 .
[10] 陆强, 张栋, 朱锡锋. 四种金属氯化物对纤维素快速热解的影响(Ⅰ)Py-GC/MS实验 [J]. 化工学报, 2010, 61(4): 1018 -1024 .