化工学报

• •    下一篇

基于CO2循环的低碳高效白云石煅烧新工艺

蒋滨繁1,2, 夏德宏1,2, 安苛苛1, 张培昆1, 敖雯青3   

  1. 1 北京科技大学能源与环境工程学院, 北京 100083;
    2 冶金工业节能减排北京市重点实验室, 北京 100083;
    3 北京科技大学材料工程学院, 北京 100083
  • 收稿日期:2019-12-03 修回日期:2020-05-14 出版日期:2023-04-17 发布日期:2020-05-18
  • 通讯作者: 夏德宏(1963-),男,教授,xia@me.ustb.edu.cn E-mail:xia@me.ustb.edu.cn
  • 作者简介:蒋滨繁(1994-),女,博士研究生,jiang@xs.ustb.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB0605900)

Efficiently low-carbon dolomite calcination process based on CO2 looping and recovering

JIANG Binfan1,2, XIA Dehong1,2, AN Keke1, ZHANG Peikun1, AO Wenqing3   

  1. 1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2 Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083, China;
    3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2019-12-03 Revised:2020-05-14 Online:2023-04-17 Published:2020-05-18

摘要: 白云石是一种广泛应用的冶金、建材和化工原料。针对白云石煅烧过程中CO2排放严重等问题,构建了基于CO2循环载热与资源化回收的白云石低碳煅烧竖窑新工艺。通过白云石(CaCO3·MgCO3)煅烧过程的Gibbs自由能变计算,发现提高煅烧温度(50~100 K)可有效克服CO2对反应的抑制作用;通过纯CO2环境中CaCO3分解过程的热重实验分析,验证了CO2循环煅烧白云石煅烧的可行性;通过化学反应动力学计算,解析了全CO2组分环境下CO2压力对CaCO3·MgCO3高温分解过程的影响,并发现提高CO2压力可促进气固传热,从而提升分解速率和改善矿料分解均匀性;对CO2循环煅烧工艺系统能-质平衡计算表明:该工艺理论能耗仅为140 kg/t(煅白),且煅烧过程的CO2排放降低70%以上,环境效益显著。

关键词: 二氧化碳, 循环, 白云石, 煅烧, 热解, 反应动力学

Abstract: Dolomite (CaCO3·MgCO3) is a widely-used raw material in metallurgy, building materials and chemical industry. In order to address the CO2 issue caused by dolomite calcination, an efficiently low-carbon dolomite (CaCO3·MgCO3) calcination process based on CO2 looping and recovering is established in this paper. According to thermochemistry, Gibbs free energy change of CaCO3·MgCO3 decomposition in pure CO2 environment is analyzed which shows that increase of temperature (50-100 K) is an efficient way to overcome the reaction depression by high CO2 concentration. Thermogravimetric analysis of CaCO3 decomposition in pure CO2 atmosphere is conducted, which confirms the feasibility of dolomite calcining in high CO2 concentration. The effect of CO2 pressure (PCO2) on CaCO3·MgCO3 decomposition is investigated. The heat transfer between gas and solid can be enhanced attributed to the high PCO2, which therefore improve the dolomite calcination efficiency. Afterwards, thermal analysis of the dolomite calcination system with CO2 loop is conducted, which turns out that the theoretical energy consumption is 140 kg per ton of MgO, and more than 70% CO2 emission would be reduced from the calcination process.

Key words: carbon dioxide, looping, dolomite, calcination, pyrolysis, reaction kinetics

中图分类号: 

  • TQ021.8
[1] 狄跃忠, 王智慧, 王耀武, 等. 新法铝热炼镁还原渣提取高白氢氧化铝[J]. 化工学报, 2013,,64(3):1106-1111. Di Y, Wang Z, Wang Y, et al. Extract of high-whiteness aluminum hydroxide from residues of novel process of magnesium production by aluminothermic reduction[J]. CIESC Journal, 2013,,64(3):1106-1111.
[2] 中国有色金属工业协会. 中国有色金属工业年鉴[M]. 北京:中国学术期刊电子杂志社, 2018 China Nonferrous Metals Industry Association. The yearbook of nonferrous metals industry of China[M]. Beijing, China Academic Journal Press (electric), 2018.
[3] Li R, Zhang S, Guo L, et al. Numerical study of magnesium (Mg) production by the Pidgeon process:Impact of heat transfer on Mg reduction process[J]. International Journal of Heat and Mass Transfer. 2013, 59:328-337
[4] 夏德宏, 余涛. 皮江法炼镁工艺用能状况诊断及节能措施[J]. 工业炉, 2005, 27(2):32-35. Xia D, Yu T. Diagnosis on energy consumption and energy-saving measures for Pidgeon's magnesium reduction process[J]. Industrial Furnace, 2005, 27(2):32-35.
[5] Pidgeon, L. M.; Alexander, W. A. Thermal production of magnesiums pilot plant studies on the retort ferrosilicon process. New York Meeting:reduction and refining of non-ferrous metals. Trans. Am. Inst. Min. Mater. Eng. 1944, 159:315-352.
[6] Zang J, Ding W. The Pidgeon process in China and its future[M]. J. Hryn (Ed.), Magnesium Technology, TMS (The Minerals, Metals & Materials Society), New Orleans, LA, U.S.A. 2001, 7-10.
[7] Peters G P, Marland G, Quéré C L, Boden T, Canadell J G, Raupach M R. Rapid growth in CO2 emissions after the 2008-2009 global financial crisis[J]. Nature Climate Change, 20102, 2-4.
[8] Wang W, Wang S, Ma X, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7):3703.
[9] Brown R, Magnesium in the 21st century, Adv. Mater. Processes, 2009, 167(1):31-33.
[10] Halmann M, Frei A, Steinfeld A. Magnesium production by the Pidgeon process involving dolomite calcination and MgO silicothermic reduction:Thermodynamic and environmental analyses[J]. Industrial & Engineering Chemistry Research, 2008, 47:2146-2154.
[11] Maitra S, Choudhury A, Das H S, Pramanik Ms J. Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal condition. Journal of Materials Science, 2005, 18(40):4749-4751.
[12] 陈文仲, 王春华, 刘宝玉, 等. 回转窑供风管参数对窑内热工状况的影响[J]. 化工学报, 2011, 11(62):3109-3114. Chen W, Wang C, Liu B, et al. Influences of air pipe parameters on thermal working conditions in carbon rotary kilns[J]. CIESC Journal, 2011, 11(62):3109-3114.
[13] 张志霄, 池涌, 李水清, 等. 回转窑传热模型与数值模拟[J]. 化学工程, 2003, 31(4):27-31. Zhang Z, Chi Y, Li S, et al. Axial heat-transfer model and numerical simulation for rotary kiln[J]. Chemical Engineering, 2003, 31(4):27-31.
[14] 徐祥斌, 罗序燕, 曹慧君, 等. 硅热法炼镁白云石煅烧节能技术研究及最新进展[J]. 轻金属, 2010, 9:55-59. Xu X, Luo X, Cao H, et al. The research and the latest evolution of saving energy in the dolomite calcination of Silicon thermal process[J]. Light Metals, 2010, 9:55-59.
[15] 殷谦, 杜文静, 纪兴林, 等. 一种回转窑余热回收用集热器的实验研究及其结构优化[J]. 化工学报, 2016, 67(7):2740-2747. Yin Q, Du W, Ji X, et al. Experimental measurement and structure optimization of heat recovery exchangers on rotary kilns[J]. CIESC Journal, 2016, 67(7):2740-2747.
[16] Yin Q, Du W J, Ji X L, et al. Optimization design and economic analyses of heat recovery exchangers on rotary kilns[J]. Applied Energy, 2016, 180:743-756.
[17] Söğüt Z, Oktay Z, Karakoç H. Mathematical modeling of heat recovery from a rotary kiln[J]. Applied Thermal Engineering, 2010, 30(8):817-825.
[18] Luo Q, Li P, Cai L, et al. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns[J]. Journal of Electronic Materials, 2015, 44(6):1750-1762.
[19] Senegačnik A, Oman J, Širok B. Analysis of calcination parameters and the temperature profile in an annular shaft kiln, part 1:theoretical survey[J]. Applied Thermal Engineering, 2007, 27(8-9):1467-1472.
[20] Senegačnik A, Oman J, Širok B. Annular shaft kiln for lime burning with kiln gas recirculation[J]. Applied Thermal Engineering, 2008, 28(7):785-792.
[21] Zuideveld P L, Berg P J V D. Design of lime shaft kilns[J]. Chemical Engineering Science, 1971, 26(6):875-883.
[22] Gutiérreza A, Cogollos Martíneza J B, Vandecasteeleb C. Energy and exergy assessments of a lime shaft kiln[J]. Applied Thermal Engineering. 2013, 51(1-2):273-280.
[23] Piringer H, Lime shaft kilns[J]. Energy Procedia, 2017, 120:75-95.
[24] Krause B, Liedmann B, Wiese J, et sl. 3D-DEM-CFD simulation of heat and mass transfer, gas combustion and calcination in an intermittent operating lime shaft kiln[J]. International Journal of Thermal Sciences, 2017, 117:121-135.
[25] 任玲, 夏德宏, 赵恒, 镁冶金白云石煅烧振荡式均匀加热U型窑的开发[J]. 中国有色冶金, 2010, 41(2):51-55. Ren L, Xia D, Zhao H. Development of U-shaped calcining kiln with oscillating and uniform heating for dolomite calcination in magnesium metallurgy[J]. China Nonferrous Metallurgy, 2010, 41(2):51-55.
[26] Sasaki K, Qiu X, Hosomomi Y, et al. Effect of natural dolomite calcination temperature on sorption of borate onto calcined products[J]. Microporous and Mesoporous Materials, 2013, 171:1-8
[27] Knndsen M. The laws of molecular and viscous flow of gases through tribes[J]. Annual Physics, 1909, 28:75
[28] Jiang B, Xia D, Yu B, et al. An environment-friendly process for limestone calcination with CO2 looping and recovery[J]. Journal of Cleaner Production, 2019, 240:118147
[29] Darroudi T, Searcy A W. Effect of carbon dioxide pressure on the rate of decomposition of calcite (CaCO3)[J]. Journal of Physical Chemistry, 2013, 85:124-131.
[30] Borgwardt R H. Sintering of nascent calciumoxide[J]. Chemical Engineering Science, 1989, 44:53-63
[31] Barin I. Thermochemical Data of Pure Substances (third ed.)[M]. Weinheim (VCH):Verlagsgesellschaft mbH, 2008.
[1] 明勇, 彭艳楠, 苏文, 魏国龙, 王强, 周乃君, 赵力. 闭式热源下混合工质与纯工质的ORC性能比较[J]. 化工学报, 2020, 71(4): 1570-1579.
[2] 亢银虎, 张弋, 张朋远, 卢啸风. 二甲醚球形扩散火焰的振荡熄火动力学机理研究[J]. 化工学报, 2020, 71(4): 1469-1481.
[3] 亓士超, 朱蓉蓉, 刘昕, 薛丁铭, 刘晓勤, 孙林兵. 乙二胺不同掺杂模式下多孔有机聚合物对CO2的吸附[J]. 化工学报, 2020, 71(4): 1666-1675.
[4] 方书起, 石崇, 李攀, 白净, 常春. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报, 2020, 71(4): 1637-1645.
[5] 罗振敏, 杨勇, 程方明, 王涛, 常助川, 苏彬, 张蔓. N2和CO2惰化丙烯爆炸极限参数实验研究[J]. 化工学报, 2020, 71(4): 1922-1928.
[6] 李英泽, 杨路, 王琦, 杨思宇. BGL炉煤气化过程建模和模拟[J]. 化工学报, 2020, 71(3): 1174-1188.
[7] 党晓娥, 淮敏超. CuSO4对氰化提金贫液中SCN-的沉淀效果以及对共存离子浓度的影响[J]. 化工学报, 2020, 71(3): 1310-1316.
[8] 马金凤, 曾玺, 王芳, 康国俊, 武荣成, 许光文. 煤红外快速热解过程中床层对二次反应的影响[J]. 化工学报, 2020, 71(2): 736-745.
[9] 杨殿才, 潘宇涵, 黄群星, 蒋旭光, 王飞, 严建华. 废轮胎热解炭低温催化焦油重整制备富氢气体的研究[J]. 化工学报, 2020, 71(2): 642-650.
[10] 常诚, 冯连芳, 顾雪萍, 陈曦, 张才亮. 基于分子量分布指标的聚酯生产过程模拟方法[J]. 化工学报, 2020, 71(2): 708-714.
[11] 毛宁, 王强, 杨妍, 徐敦信, 冯炜, 张金鹏, 白红存, 郭庆杰. 基于显微组分化学键特征的宁夏庆华煤热解特性及动力学分析[J]. 化工学报, 2020, 71(2): 811-820.
[12] 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
[13] 刘宏晓, 孙伟振, 赵玲. TOME环化反应热力学分析及反应动力学研究[J]. 化工学报, 2020, 71(2): 500-506.
[14] 李扬, 张扬, 陈宣龙, 龚勋. 钙基吸附剂循环吸附性能对增强式生物质气化制氢的影响研究[J]. 化工学报, 2020, 71(2): 777-787.
[15] 崔国凯,吕书贞,王键吉. 功能化离子液体在二氧化碳吸收分离中的应用[J]. 化工学报, 2020, 71(1): 16-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!