化工学报

• •    下一篇

复合金属金属有机框架复合材料在超级电容器中的合成及应用研究

徐彦芹, 肖俪悦, 曹渊, 陈昌国, 王丹   

  1. 重庆大学化学化工学院, 重庆 400044
  • 收稿日期:2019-12-30 修回日期:2020-04-15 出版日期:2023-04-17 发布日期:2020-05-08
  • 通讯作者: 曹渊(1963-),男,博士,教授,caoyuan@cqu.edu.cn E-mail:caoyuan@cqu.edu.cn
  • 作者简介:徐彦芹(1984-),女,博士研究生,高级工程师,xuyanqin666@163.com;肖俪悦(1997-),女,硕士研究生,1300448267@qq.com
  • 基金资助:
    国家自然科学基金(21978027)

Research on synthesis and application of metal-organic frame composites in supercapacitors

XU Yanqin, XIAO Liyue, CAO Yuan, CHEN Changguo, WANG Dan   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2019-12-30 Revised:2020-04-15 Online:2023-04-17 Published:2020-05-08

摘要: 电极材料是超级电容器(SCs)的关键部件,金属-有机框架(MOFs)作为一种多孔材料,由于其比表面积高、结构可控,孔径可调等优点在SCs电极材料领域得到诸多关注,而MOFs的低导电性和稳定性仍然是实际应用中的主要挑战。MOF复合材料是一类由MOFs与一种或多种不同材料组成的复合材料,它可以有效的结合MOFs的优势和其它功能材料的优势,例如优良的导电性和独特的电化学性质等。因此,MOF复合材料可以实现高可逆容量和优良的循环性能,克服MOFs材料的缺点,在SCs电极材料领域具有广阔的应用前景。根据与MOFs复合的材料维度分类,可分为0D、1D、2D和3D MOF四类复合材料,重点综述了这四类复合材料的组成及合成方法,并系统介绍了MOF复合材料的SCs应用,对其发展前景进行展望。

关键词: 金属-有机框架材料, 复合材料, 超级电容器, 电极电容

Abstract: Electrode material is a key component of supercapacitors (SCs). As a porous material, metal-organic frameworks (MOFs) have attracted much attention in the field of SCs electrode materials due to their high specific surface area, controllable structure, and adjustable pore size. The low conductivity and stability of MOFs are still the main challenges in practical applications. MOF composite materials are a type of composite materials composed of MOFs and one or more different materials. They can effectively combine the advantages of MOFs with the advantages of other functional materials, such as excellent electrical conductivity and unique electrochemical properties. Therefore, MOF composite materials can achieve high reversible capacity and excellent cycle performance, which make them have broad application prospects in the field of SCs electrode materials. According to the dimensional classification of the materials combined with MOFs, they can be divided into four types of composite materials:0D, 1D, 2D, and 3D MOF. The composition and synthesis methods of these four types of composite materials are reviewed. The application of MOF composite materials in the field of SCs is systematically introduced. Furthermore, its development prospects are prospected.

Key words: metal-organic frameworks, composite material, supercapacitor, electrode capacitan

中图分类号: 

  • O6-1
[1] Salunkhe R R, Kaneti Y V, Kim J, et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications[J]. Accounts of chemical research, 2016, 49(12):2796-2806.
[2] Sundaram M M, Mitchell D R G. Dispersion of Ni 2+ ions via acetate precursor in the preparation of NaNiPO 4 nanoparticles:effect of acetate vs. nitrate on the capacitive energy storage properties[J]. Dalton Transactions, 2017, 46(40):13704-13713.
[3] Wu Z S, Ren W, Wang D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors[J]. ACS nano, 2010, 4(10):5835-5842.
[4] Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexible supercapacitors[J]. Chemical Society Reviews, 2014, 43(10):3303-3323.
[5] Lopes J A P, Soares F J, Almeida P M R. Integration of electric vehicles in the electric power system[J]. Proceedings of the IEEE, 2010, 99(1):168-183.
[6] Simon P, Gogotsi Y. Materials for electrochemical capacitors[M]//Nanoscience And Technology:A Collection of Reviews from Nature Journals. 2010:320-329.
[7] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9):2520-2531.
[8] Wang D G, Wang H, Song M, et al. BODIPY-based Carbonaceous Materials for High Performance Electrical Capacitive Energy Storage[J]. Chemistry-An Asian Journal, 2018, 13(20):3051-3056.
[9] Wang D G, Wang H, Lin Y, et al. Synthesis and Morphology Evolution of Ultrahigh Content Nitrogen-Doped, Micropore-Dominated Carbon Materials as High-Performance Supercapacitors[J]. ChemSusChem, 2018, 11(22):3932-3940.
[10] Mosa I M, Pattammattel A, Kadimisetty K, et al. Ultrathin graphene-protein supercapacitors for miniaturized bioelectronics[J]. Advanced energy materials, 2017, 7(17):1700358.
[11] Pu X, Li L, Liu M, et al. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators[J]. Advanced Materials, 2016, 28(1):98-105.
[12] Fan F R, Tang W, Wang Z L. Flexible nanogenerators for energy harvesting and self-powered electronics[J]. Advanced Materials, 2016, 28(22):4283-4305.
[13] Son D, Lee J, Qiao S, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders[J]. Nature nanotechnology, 2014, 9(5):397.
[14] Dubal D P, Chodankar N R, Kim D H, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Reviews, 2018, 47(6):2065-2129.
[15] Wang Y, Song Y, Xia Y. Electrochemical capacitors:mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21):5925-5950.
[16] Tang Y, Liu Z, Guo W, et al. Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor[J]. Electrochimica Acta, 2016, 190:118-125.
[17] Raza W, Ali F, Raza N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52:441-473.
[18] Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4):1300816.
[19] Amali A J, Sun J K, Xu Q. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage[J]. Chemical communications, 2014, 50(13):1519-1522.
[20] Chen, B.; Eddaoudi, M.; Hyde, S.; O'keeffe, M.; Yaghi, O.Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores. Science 2001, 291, 1021-1023.
[21] Zhou, L.; Wang, Y.; Zhou, C.; Wang, C.; Shi, Q.; Peng, S. From Hydrogen-Bonded Net-to-Net Framework to Twofold Interpenetrated (4, 6) Net:Effect of Ligand Topology on the Supramolecular Structural Diversity. Cryst. Growth Des. 2007, 7, 300-306.
[22] Millward, A. R.; Yaghi, O. M. Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. J. Am. Chem. Soc. 2005, 127, 17998-17999.
[23] Morozan, A.; Jaouen, F. Metal Organic Frameworks for Electrochemical Applications. Energy Environ. Sci. 2012, 5, 9269-9290.
[24] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid:a battery of choices[J]. Science, 2011, 334(6058):928-935.
[25] Chen, B.; Eddaoudi, M.; Hyde, S.; O'keeffe, M.; Yaghi, O.Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores. Science 2001, 291, 1021-1023.
[26] Xue Y, Zheng S, Xue H, et al. Metal-organic framework composites and their electrochemical applications[J]. Journal of Materials Chemistry A, 2019, 7(13):7301-7327.
[27] Díaz, R.; Orcajo, M. G.; Botas, J. A.; Calleja, G.; Palma, J. Co8-MOF-5 as Electrode for Supercapacitors. Mater. Lett. 2012, 68, 126-128.
[28] Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y. B.; Kang, J. K.;Yaghi, O. M. Supercapacitors of Nanocrystalline Metal-Organic Frameworks. ACS Nano 2014, 8, 7451-7457.
[29] Gao Y, Wu J, Zhang W, et al. The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks-8(ZIF-8) composite material for supercapacitors[J]. Materials Letters, 2014, 128:208-211.
[30] Yang, J.; Xiong, P.; Zheng, C.; Qiu, H.; Wei, M. Metal-Organic Frameworks:A New Promising Class of Materials for a High Performance Supercapacitor Electrode. J. Mater. Chem. A 2014, 2, 16640-16644.
[31] Yang, J.; Zheng, C.; Xiong, P.; Li, Y.; Wei, M. Zn-Doped Ni-MOF Material with a High Supercapacitive Performance. J. Mater.Chem. A 2014, 2, 19005-19010.
[32] Gong, Y.; Li, J.; Jiang, P. G.; Li, Q. F.; Lin, J. H. Novel Metal (II)Coordination Polymers Based on N, N'-bis-(4-Pyridyl) Phthalamide as Supercapacitor Electrode Materials in an Aqueous Electrolyte Dalton Trans. 2013, 42, 1603-1611.
[33] Du W, Bai Y L, Xu J, et al. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors[J]. Journal of Power Sources, 2018, 402:281-295.
[34] Muzaffar A, Ahamed M B, Deshmukh K, et al. A review on recent advances in hybrid supercapacitors:Design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 101:123-145.
[35] Wei T, Zhang M, Wu P, et al. POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage[J]. Nano Energy, 2017, 34:205-214.
[36] Guo S N, Zhu Y, Yan Y Y, et al. (Metal-Organic Framework)-Polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor[J]. Journal of Power Sources, 2016, 316:176-182
[37] Choi K M, Jeong H M, Park J H, et al. Supercapacitors of nanocrystalline metal-organic frameworks[J]. ACS nano, 2014, 8(7):7451-7457.
[38] Aguilera-Sigalat J, Bradshaw D. Synthesis and applications of metal-organic framework-quantum dot (QD@MOF) composites[J]. Coordination Chemistry Reviews, 2016, 307:267-291.
[39] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels[J]. Nature methods, 2008, 5(9):763.
[40] Zhang S, Liu H, Sun C, et al. CuO/Cu 2 O porous composites:shape and composition controllable fabrication inherited from metal organic frameworks and further application in CO oxidation[J]. Journal of Materials Chemistry A, 2015, 3(10):5294-5298.
[41] Aijaz A, Karkamkar A, Choi Y J, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework:a double solvents approach[J]. Journal of the American Chemical Society, 2012, 134(34):13926-13929.
[42] Railey P, Song Y, Liu T, et al. Metal organic frameworks with immobilized nanoparticles:Synthesis and applications in photocatalytic hydrogen generation and energy storage[J]. Materials Research Bulletin, 2017, 96:385-394.
[43] Xu Y, Zheng S, Tang H, et al. Prussian blue and its derivatives as electrode materials for electrochemical energy storage[J]. Energy Storage Materials, 2017, 9:11-30.
[44] Vayssieres L. On the design of advanced metal oxide nanomaterials[J]. International Journal of Nanotechnology, 2004, 1(1-2):1-41.
[45] Xiao X, Li X, Zheng S, et al. Nanostructured germanium anode materials for advanced rechargeable batteries[J]. Advanced Materials Interfaces, 2017, 4(6):1600798.
[46] Deng M, Bo X, Guo L. Encapsulation of platinum nanoparticles into a series of zirconium-based metal-organic frameworks:Effect of the carrier structures on electrocatalytic performances of composites[J]. Journal of Electroanalytical Chemistry, 2018, 815:198-209.
[47] Imperor-Clerc M, Bazin D, Appay M D, et al. Crystallization of β-MnO2 nanowires in the pores of SBA-15 silicas:in situ investigation using synchrotron radiation[J]. Chemistry of materials, 2004, 16(9):1813-1821.
[48] Pang H, Zhang Y, Cheng T, et al. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors[J]. Nanoscale, 2015, 7(38):16012-16019.
[49] Liu H, Liu Y, Li Y, et al. Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols[J]. The Journal of Physical Chemistry C, 2010, 114(31):13362-13369.
[50] Zheng S, Li B, Tang Y, et al. Ultrathin nanosheet-assembled[Ni3(OH)2(PTA)2(H2O)4]·2H2O hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions[J]. Nanoscale, 2018, 10(27):13270-13276.
[51] Chen L, Chen H, Li Y. One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents[J]. Chemical Communications, 2014, 50(94):14752-14755.
[52] Aguilera-Sigalat J, Bradshaw D. Synthesis and applications of metal-organic framework-quantum dot (QD@MOF) composites[J]. Coordination Chemistry Reviews, 2016, 307:267-291.
[53] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. science, 2005, 307(5709):538-544.
[54] Alivisatos P. The use of nanocrystals in biological detection[J]. Nature biotechnology, 2004, 22(1):47.
[55] Somers R C, Bawendi M G, Nocera D G. CdSe nanocrystal based chem-/bio-sensors[J]. Chemical Society Reviews, 2007, 36(4):579-591.
[56] Chen F, Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells[J]. Nano Letters, 2004, 4(10):1827-1832.
[57] Xu C, Mochizuki D, Hashimoto Y, et al. Luminescence of ortho-Metalated Iridium Complexes Encapsulated in Zeolite Supercages by the Ship-in-a-Bottle Method[J]. European Journal of Inorganic Chemistry, 2012, 2012(19):3113-3120.
[58] Yu Y, Mai J, Wang L, et al. Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in NaY zeolite for CO 2 capture[J]. Scientific reports, 2014, 4:5997.
[59] Urrego S, Serra E, Alfredsson V, et al. Bottle-around-the-ship:a method to encapsulate enzymes in ordered mesoporous materials[J]. Microporous and Mesoporous Materials, 2010, 129(1-2):173-178.
[60] Aguilera-Sigalat J, Bradshaw D. Synthesis and applications of metal-organic framework-quantum dot (QD@MOF) composites[J]. Coordination Chemistry Reviews, 2016, 307:267-291.
[61] Turner S, Lebedev O I, Schröder F, et al. Direct Imaging of Loaded Metal-Organic Framework Materials (Metal@MOF-5)[J]. Chemistry of Materials, 2008, 20(17):5622-5627.
[62] Lu G, Li S, Guo Z, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J]. Nature chemistry, 2012, 4(4):310.
[63] Kaur R, Paul A K, Deep A. Nanocomposite of europium organic framework and quantum dots for highly sensitive chemosensing of trinitrotoluene[J]. Forensic science international, 2014, 242:88-93.
[64] Lin X, Gao G, Zheng L, et al. Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing[J]. Analytical chemistry, 2013, 86(2):1223-1228.
[65] Falcaro P, Hill A J, Nairn K M, et al. A new method to position and functionalize metal-organic framework crystals[J]. Nature communications, 2011, 2:237.
[66] Jeong E, Lee W R, Ryu D W, et al. Reversible structural transformation and selective gas adsorption in a unique aqua-bridged Mn (II) metal-organic framework[J]. Chemical Communications, 2013, 49(23):2329-2331.
[67] Xu M W, Bao S J, Li H L. Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor[J].Journal of Solid State Electrochemistry, 2007, 11(3):372-377.
[68] Falcaro P, Ricco R, Doherty C M, et al. MOF positioning technology and device fabrication[J]. Chemical Society Reviews, 2014, 43(16):5513-5560.
[69] Zhan W, Kuang Q, Zhou J, et al. Semiconductor@metal-organic framework core-shell heterostructures:a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response[J]. Journal of the American Chemical Society, 2013, 135(5):1926-1933.
[70] Wang L, Feng X, Ren L, et al. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J]. Journal of the American Chemical Society, 2015, 137(15):4920-4923.
[71] Zheng S, Li X, Yan B, et al. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials, 2017, 7(18):1602733.
[72] Yang X, Jiang X, Huang Y, et al. Building Nanoporous metal-organic frameworks "armor" on fibers for high-performance composite materials[J]. ACS applied materials & interfaces, 2017, 9(6):5590-5599.
[73] Yu B, Wang F, Dong W, et al. Self-template synthesis of core-shell ZnO@ZIF-8 nanospheres and the photocatalysis under UV irradiation[J]. Materials Letters, 2015, 156:50-53.
[74] Huang T Y, Kung C W, Liao Y T, et al. Enhanced Charge Collection in MOF-525-PEDOT Nanotube Composites Enable Highly Sensitive Biosensing[J]. Advanced Science, 2017, 4(11):1700261.
[75] Zhang Y, Lin B, Sun Y, et al. Carbon nanotubes@metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage[J]. Rsc Advances, 2015, 5(72):58100-58106.
[76] Zhou H, Zhang J, Zhang J, et al. Spillover enhanced hydrogen storage in Pt-doped MOF/graphene oxide composite produced via an impregnation method[J]. Inorganic Chemistry Communications, 2015, 54:54-56.
[77] Zhou Y, Mao Z, Wang W, et al. In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni-MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials[J]. ACS applied materials & interfaces, 2016, 8(42):28904-28916.
[78] Jin Y, Zhao C, Sun Z, et al. Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries[J]. RSC Advances, 2016, 6(36):30763-30768.
[79] Zhang W, Tan Y, Gao Y, et al. Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications[J]. Journal of Applied Electrochemistry, 2016, 46(4):441-450.
[80] Tsuruoka T, Furukawa S, Takashima Y, et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth[J]. Angewadte Chemie International Edition, 2009, 48(26):4739-4743.
[81] Kuo C H, Tang Y, Chou L Y, et al. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J]. Journal of the American chemical society, 2012, 134(35):14345-14348.
[82] Wang Z, Wang B, Yang Y, et al. Mixed-metal-organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries[J]. ACS applied materials & interfaces, 2015, 7(37):20999-21004.
[83] Choi K M, Kim D, Rungtaweevoranit B, et al. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light[J]. Journal of the American Chemical Society, 2016, 139(1):356-362.
[84] Deng Y, Deng C, Qi D, et al. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin[J]. Advanced Materials, 2009, 21(13):1377-1382.
[85] Zhang N, Zhu B, Peng F, et al. Synthesis of metal-organic-framework related core-shell heterostructures and their application to ion enrichment in aqueous conditions[J]. Chemical Communications, 2014, 50(57):7686-7689.
[86] Chen Y, Xiong Z, Peng L, et al. Facile preparation of core-shell magnetic metal-organic framework nanoparticles for the selective capture of phosphopeptides[J]. ACS applied materials & interfaces, 2015, 7(30):16338-16347.
[87] Shekhah O, Wang H, Kowarik S, et al. Step-by-step route for the synthesis of metal-organic frameworks[J]. Journal of the American Chemical Society, 2007, 129(49):15118-15119.
[88] Shekhah O, Wang H, Zacher D, et al. Growth mechanism of metal-organic frameworks:insights into the nucleation by employing a step-by-step route[J]. Angewandte Chemie International Edition, 2009, 48(27):5038-5041.
[89] Chen X, Ding N, Zang H, et al. Fe3O4@MOF core-shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples[J]. Journal of Chromatography A, 2013, 1304:241-245.
[90] Ke F, Qiu L G, Yuan Y P, et al. Fe 3 O 4@MOF core-shell magnetic microspheres with a designable metal-organic framework shell[J]. Journal of Materials Chemistry, 2012, 22(19):9497-9500.
[91] Wu Y, Liu Q, Xie Y, et al. Core-shell structured magnetic metal-organic framework composites for highly selective enrichment of endogenous N-linked glycopeptides and phosphopeptides[J]. Talanta, 2018, 190:298-312.
[92] Lee H J, Cho W, Oh M. Advanced fabrication of metal-organic frameworks:template-directed formation of polystyrene@ZIF-8 core-shell and hollow ZIF-8 microspheres[J]. Chemical Communications, 2012, 48(2):221-223.
[93] Kuo C H, Tang Y, Chou L Y, et al. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J]. Journal of the American chemical society, 2012, 134(35):14345-14348..
[94] Li F, Song J, Yang H, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors[J]. Nanotechnology, 2009, 20(45):455602.
[95] Mao Y, Li G, Guo Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J]. Nature communications, 2017, 8:14628.
[96] Yang S J, Choi J Y, Chae H K, et al. Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite[J]. Chemistry of Materials, 2009, 21(9):1893-1897.
[97] Sohrabi S, Dehghanpour S, Ghalkhani M. A cobalt porphyrin-based metal organic framework/multi-walled carbon nanotube composite electrocatalyst for oxygen reduction and evolution reactions[J]. Journal of materials science, 2018, 53(5):3624-3639.
[98] Kumar P, Vellingiri K, Kim K H, et al. Modern progress in metal-organic frameworks and their composites for diverse applications[J]. Microporous and Mesoporous Materials, 2017, 253:251-265.
[99] Zheng S F, Hu J S, Zhong L S, et al. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries[J]. Chemistry of Materials, 2008, 20(11):3617-3622.
[100] Wen P, Gong P, Sun J, et al. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density[J]. Journal of Materials Chemistry A, 2015, 3(26):13874-13883.
[101] Zhao S, Wu H, Li Y L, et al. Core-shell assembly of carbon nanofiber and 2D conductive metal-organic framework as flexible free-standing membrane for high-performance supercapacitor[J]. Inorganic Chemistry Frontiers, 2019.
[102] Hong J, Park S J, Kim S. Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes[J]. Electrochimica Acta, 2019, 311:62-71.
[103] Li Z, Tan Y, Zhang W, et al. Flower-like Ni 3(NO 3) 2(OH) 4@Zr-metal organic framework (UiO-66) composites as electrode materials for high performance pseudocapacitors[J]. Ionics, 2016, 22(12):2545-2551.
[104] Zhang S, Li X, Ding B, et al. A novel spitball-like Co3(NO3)2(OH)4@Zr-MOF@RGO anode material for sodium-ion storage[J]. Journal of Alloys and Compounds, 2020, 822:153624.
[1] 于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827.
[2] 白志蕊, 徐洪涛, 屈治国, 张剑飞, 苗玉波. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
[3] 郭华超, 杨波, 黄国家, 徐青永, 李爽, 伍振凌. 聚偏氟乙烯/石墨烯复合材料的制备及性能研究[J]. 化工学报, 2020, 71(4): 1881-1888.
[4] 赵少飞, 刘鹏, 李婉萍, 曾小红, 钟远红, 余林, 曾华强. 一步电沉积法制备硫化镍/泡沫镍材料及其赝电容性能研究[J]. 化工学报, 2020, 71(4): 1836-1843.
[5] 杨鑫宇, 吴杰, 张建庭, 吴纯鑫, 赵德明. 功能化磁性纳米复合材料Fe3O4-mPD/SP吸附Cr(Ⅵ)研究[J]. 化工学报, 2020, 71(3): 1060-1071.
[6] 李莹莹, 邓谦谦, 刘浩, 刘其春, 顾正桂, 王昉. 新型丝素复合膜的微结构表征及热稳定性[J]. 化工学报, 2020, 71(1): 388-396.
[7] 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368.
[8] 侯德鑫,陈玥,叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
[9] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
[10] 禹兴海, 罗齐良, 潘剑, 韩玉琦, 张奇峰. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600.
[11] 徐杰, 陈新, 王玲玲. 用过期切片面包制备环保超级电容器活性炭电极材料[J]. 化工学报, 2019, 70(9): 3582-3589.
[12] 王凤超, 高宁博, 全翠. 废轮胎热解技术及炭黑产物的品质提升与应用研究进展[J]. 化工学报, 2019, 70(8): 2864-2875.
[13] 贾蒲悦, 武卫东, 王益聪, 张兵. 新型复合低温相变蓄冷材料的研制及热物性优化[J]. 化工学报, 2019, 70(7): 2758-2765.
[14] 张璇, 杨佳兴, 金秋阳, 佟明兴, 周俊熹, 高静, 李国华. 超盐环境下含氮碳气凝胶的制备及其在超级电容器中的应用[J]. 化工学报, 2019, 70(7): 2748-2757.
[15] 靳宏伟,翟丹丹,王心,赵爽,孟祥阳,何玥颖,沈洋,惠明. 石墨烯/聚苯胺修饰阳极对微生物燃料电池性能的影响[J]. 化工学报, 2019, 70(6): 2343-2350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!