化工学报

• •    下一篇

带有蓄热型直接冷凝式加热板的空气源热泵系统性能研究

邵索拉, 张欢, 由世俊, 郑万冬   

  1. 天津大学环境科学与工程学院, 天津, 300350
  • 收稿日期:2020-02-21 修回日期:2020-04-28 出版日期:2023-04-17 发布日期:2020-04-29
  • 通讯作者: 郑万冬(1986-),男,博士,副教授,zhengwandong@139.com E-mail:zhengwandong@139.com
  • 作者简介:邵索拉(1993-),女,博士研究生,solar_shao@163.com
  • 基金资助:
    国家自然科学基金项目(51808386)

Performance investigation of air-source heat pump heating system with a novel thermal storage refrigerant-heated panel

SHAO Suola, ZHANG Huan, YOU Shijun, ZHENG Wandong   

  1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
  • Received:2020-02-21 Revised:2020-04-28 Online:2023-04-17 Published:2020-04-29

摘要: 针对现有的空气源热泵冬季供热系统,提出了一种使用新型蓄热型直接冷凝式加热板(RHP)的空气源热泵供热系统,并测试了RHP的热性能和系统的运行特性,同时分析了系统的效率和经济性。实验结果表明,在39℃的冷凝温度下,RHP的热容量高达1044 W,RHP的蓄热量大于1000 kJ。在室外空气温度为8℃时,系统COP高达3.7。此外,对于20 m2的居住房间而言,该系统的供暖初始投资成本和总运行成本分别为3174.7元和512.0元,在居住建筑冬季供暖领域具有较大的竞争力。

关键词: 实验验证, 空气源热泵, 热性能分析, 传热, 经济

Abstract: In this paper, a novel refrigerant-heated panel (RHP) is proposed for air-source heat pump (ASHP) heating system to replace the high emission heating systems. Experiments are conducted to test the thermal performance of the RHP and system operation characteristics. Meanwhile, the system efficiency and the economic performance of the proposed system are discussed. The experimental results show that the heating capacity of the RHP is 1044 W at the condensation temperature of 39℃, and the heat stored in the RHP is more than 1000 kJ under the heating conditions. Meanwhile, the coefficient of performance (COP) of the proposed system is as high as 3.7 at the outdoor air temperature of 8℃. In addition, the initial capital cost and annual cost of the system are 3174.7 CNY and 512.0 CNY for a 20 m2 room heating in China, which is competitive in distributed heating systems in winter.

Key words: experimental validation, air-source heat pump, heating performance analysis, heat transfer, economics

中图分类号: 

  • TK519
[1] Torekov M S, Bahnsenb N, Qvale B. The relative competitive positions of the alternative means for domestic heating[J]. Energy, 2007, 32(5):627-633.
[2] 饶荣水, 谷波, 周泽, 等. 寒冷地区用空气源热泵技术进展[J]. 建筑热能通风空调, 2005, 24(4):27-31. Rao R S, Gu B, Zhou Z, et al. Development of Air Source Heat Pump for Cold Regions[J]. Building Energy & Environment, 2005, 24(4):27-31.
[3] 曾璟. 夏热冬冷地区蓄能型空气源热泵地板供暖系统的实验研究[D]. 长沙:湖南大学, 2016. Zeng J. Experiments and analysis of the sensible heat storage air source heat pump for residential heating in hot summer and cold winter zone[D]. Changsha:Hunan University, 2016.
[4] Han B L, Yan G, Yu J L. Refrigerant migration during startup of a split air conditioner in heating mode[J]. Applied Thermal Engineering, 2019, 148(2):1068-1073.
[5] Huang C, Li R B, Liu Y, et al. Study of indoor thermal environment and stratified air-conditioning load with low-sidewall air supply for large space based on Block-Gebhart model[J]. Building and Environment, 2019, 147(1):495-505.
[6] Hu B, Wang R Z, Xiao B, et al. Performance evaluation of different heating terminals used in air source heat pump system[J], International Journal of Refrigeration, 2018, 98(2):274-282.
[7] Asaee S R, Ugursal V I, Beausoleil-Morrison I. Techno-economic feasibility evaluation of air to water heat pump retrofit in the Canadian housing stock[J]. Applied Thermal Engineering, 2017, 111(1):936-947.
[8] Lee S, Park B, Kim J, et al. Evaluation of thermal characteristics on a multi-sheet-type radiant panel heating system[J]. Journal of Building Engineering, 2016, 8(12):48-57.
[9] Werner-Juszczuk A J. Experimental and numerical investigation of lightweight floor heating with metallised polyethylene radiant sheet[J]. Energy and Buildings, 2018, 177(10):23-32.
[10] 于涛, 乔春珍, 赵玉清. 空气源热泵+散热器低温采暖在北京农村地区应用的综合性分析[J]. 节能, 2014, 387(12):51-54. Yu T, Qiao C Z, Zhao Y Q. Comprehensive analysis of low temperature space heating system with air source heat pump and radiators in rural areas in Beijing[J]. Energy Conservation, 2014, 387(12):51-54.
[11] Xu S X, Ding R C, Niu J H, et al. Investigation of air-source heat pump using heat pipes as heat radiator[J]. International Journal of Refrigeration, 2018, 90(6):91-98.
[12] Dong J K, Zhang L, Deng S M, et al. An experimental study on a novel radiant-convective heating system based on air source heat pump[J]. Energy and Buildings, 2018, 158(1):812-821.
[13] 方修睦. 建筑环境测试技术[M]. 北京:中国建筑工业出版社, 2002:20. Fang X M. Building environment testing technology[M]. Beijing:China Architecture & Building Press, 2002:20.
[14] Churchill S W, Chu H H S. Correlating equations for laminar and turbulent free convection from a vertical plate[J]. International Journal of Heat and Mass Transfer, 1975, 18(2):1323-1329.
[15] Laouadi A. Development of a radiant heating and cooling model for building energy simulation software[J]. Building and Environment, 2004, 39(4):421-431.
[16] Yu G Q, Yao Y P. The Experimental Research on the Heating and Cooling Performance of Light Floor Radiant Panels[J]. Procedia Engineering, 2015, 121:1349-1355.
[17] Dong J K, Deng S M, Jiang Y Q, et al. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump[J]. Applied Thermal Engineering, 2012, 37(5):380-387.
[18] Shao S L, Zhang H, You S J, et al. Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system[J]. Applied Energy, 2019, 247(32):78-88.
[19] Mateu-Royoa C, Navarro-Esbría J, Mota-Babilonia A, et al. Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery[J]. Applied Energy, 2019, 253(11):113504.
[20] 曾章传. 空气源热泵直接地板辐射采暖能效及地板传热研究[D]. 郑州:郑州大学, 2010. Zeng Z C. Thermodynamics analysis and heat transfer research of direct radiant floor heating system with ASHP[D]. Zhengzhou:Zhengzhou University, 2010.
[21] British Standards Institution. Rdiators and convectors-Part 2:Test Methods and Rating:BS EN 442-2:2014[S]. London:BSI standards, 2014.
[22] Yao Y, Jiang Y, Deng S, et al. A study on the performance of the airside heat exchanger under frosting in an air source heat pump water heater/chiller unit[J]. International Journal of Heat and Mass Transfer, 2004, 47(17-18):3745-3756.
[23] The US Department of Energy. 2011 Building Energy Databook[M]. US:D & R International, Ltd., 2012:68-113.
[24] Ivar B, Toshihiko N. A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method[J]. Energy, 2014, 74(1):537-554.
[25] 清华大学建筑节能研究中心. 建筑能耗模拟及eQUEST & DeST操作教程[M]. 北京:中国建筑工业出版社, 2014:268. Tsinghua University building energy conservation research center. Building Energy Simulation and Operating Tutorial of eQUEST & DeST[M]. Beijing:China Architecture & Building Press, 2014:268.
[26] 中华人民共和国建设部. 城市热力网设计规范:CJJ 34-2002[S]. 北京:中国标准出版社, 2002. Ministry of Construction of the People's Republic of China. Design code of district heating network:CJJ 34-2002[S]. Beijing:Standards Press of China, 2002.
[27] Zhang Y, Zhu C G, Zhang H, et al. Experimental study of a humidification-dehumidification desalination system with heat pump unit[J]. Desalination, 2018, 442(15):108-117.
[28] Junghans L. Evaluation of the economic and environmental feasibility of heat pump systems in residential buildings, with varying qualities of the building envelope[J]. Renewable Energy, 2015, 76(4):699-705.
[29] Wang Q K, Hu Z Y, Li Q H. China's Power Tariff in the Perspective of International Comparison[J]. Electric Power Technologic Economics. 2009, 21:27-34.
[30] International Energy Agency. Energy prices & taxes[R] Paris:IEA, 2009.
[31] Zhang Q, Zhang L, Nie J, et al. Techno-economic analysis of air source heat pump applied for space heating in northern China[J]. Applied Energy, 2017, 207(1):533-542.
[32] Popa V, Ion I, Popa C L. Thermo-Economic Analysis of an Air-to-Water Heat Pump[J]. Energy Procedia, 2016, 85(1):408-415.
[33] Masip X, Cazorla-Marín A, Montagud-Montalvá C, et al. Energy and techno-economic assessment of the effect of the coupling between an air source heat pump and the storage tank for sanitary hot water production[J]. Applied Thermal Engineering, 2019, 159(8):113853.
[34] Hakkaki-Fard A, Eslami-Nejad P, Aidoun Z, et al. A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates[J]. Energy, 2015, 87(1):49-59.
[1] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[2] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[3] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[4] 涂爱民, 刘世杰, 莫逊, 朱冬生, 尹应德. 螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究[J]. 化工学报, 2020, 71(4): 1562-1569.
[5] 何德峰, 张永达, 李廉明, 仇翔. 循环流化床燃烧系统无终端约束字典序经济预测控制[J]. 化工学报, 2020, 71(3): 1210-1216.
[6] 关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130.
[7] 李保红, 李继文. 采用换热器负荷图指导换热网络改造的新方法[J]. 化工学报, 2020, 71(3): 1288-1296.
[8] 周年勇, 徐慕豪, 冯浩, 段锋, 王庆荣, 陈海飞, 郭强. 闭式喷雾冷却的瞬态传热过程研究[J]. 化工学报, 2020, 71(3): 1018-1025.
[9] 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008.
[10] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[11] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[12] 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625.
[13] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[14] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[15] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!