化工学报

• •    下一篇

基于正交层次法的锂离子电池热管散热模组数值模拟分析

田晟, 肖佳将   

  1. 华南理工大学土木与交通学院, 广东 广州 510640
  • 收稿日期:2020-02-18 修回日期:2020-04-14 出版日期:2023-04-17 发布日期:2020-04-29
  • 通讯作者: 田晟(1969-),男,博士,副教授,shitian1@scut.edu.cn E-mail:shitian1@scut.edu.cn
  • 作者简介:田晟(1969-),男,博士,副教授,shitian1@scut.edu.cn
  • 基金资助:
    广东省自然科学基金项目(2020A1515010382);国家留学基金项目(201706155003);广东省科技计划项目(2015A080803001)

Numerical simulation and analysis of lithium-ion battery heat pipe cooling module based on orthogonal AHP

TIAN Sheng, XIAO Jiajiang   

  1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2020-02-18 Revised:2020-04-14 Online:2023-04-17 Published:2020-04-29

摘要: 设计了锂离子电池热管-铝板嵌合式散热模组,增大热管与电池接触面积,强化换热。利用数值模拟和正交试验层次分析研究了影响模组散热性能各因素的具体影响权重,进行参数优选。结果表明:各试验方案下电池模组的温差均控制在3℃以内,均温性能优异;各因素对最高温度的影响程度依次为:热管冷凝段对流换热系数 > 热管冷凝段长度 > 铝板厚度 > 热管间距;结合层次分析确定最佳参数组合为热管冷凝段对流换热系数25W·m-2·K-1、热管长度117mm、铝板厚度2mm、热管间距20mm,该方案下电池以2C倍率放电至20%模组的最高温度为41.60℃,温差为1.35℃,满足散热要求。

关键词: 锂离子电池, 热管, 传热, 数值模拟, 正交试验, 层次分析

Abstract: In view of the problems of small heat exchange area and insufficient contact in the separate use of heat pipe for power battery cooling system, a heat pipe-aluminum plate chimeric cooling structure was designed for lithium-ion battery module to increase contact area and enhance heat transfer. By means of numerical simulation and orthogonal experiment analytic hierarchy process (AHP), the influence degree and specific weight of each factor on the cooling performance of the module were studied, and then optimized the parameters. The results showed that the temperature difference of the battery module was controlled within 3℃ under each experiment scheme, which indicated the temperature uniformity of the battery module was excellent. The influence degree of each factor on the maximum temperature was as follows:the convective heat transfer coefficient of condensation section of heat pipes > the length of condensation section of heat pipes > the thickness of aluminum plates > the spacing between heat pipes. Combined with AHP analysis, the optimal parameters combination was determined as follows:the convective heat transfer coefficient of condensation section of heat pipes was 25W·m-2·K-1, the length of heat pipes was 117mm, the thickness of aluminum plates was 2mm, and the spacing of heat pipes was 20mm. Under the scheme, the maximum temperature of the system was 41.60℃ and the temperature difference was 1.35℃ when the battery module discharged at a rate of 2C to 20%, which met the cooling requirements.

Key words: lithium-ion battery, heat pipe, heat transfer, numerical simulation, orthogonal experiment, analytic hierarchy process

中图分类号: 

  • U463
[1] 李军求, 吴朴恩, 张承宁. 电动汽车动力电池热管理技术的研究与实现[J]. 汽车工程, 2016, 38(1):22-27+35. Li J Q, Wu P E, Zhang C N. Study and implementation of thermal management technology for the power batteries of electric vehicle[J]. Automotive Engineering, 2016, 38(1):22-27+35.
[2] Chen K, Wu W X, Yuan F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167:781-790.
[3] Bahiraei F, Farta A, Nazrib G A. Electrochemical-thermal modeling to evaluate active thermal management of a lithium-ion battery module[J]. Electrochimica Acta, 2017, 254:59-71.
[4] 谈秋宏. 电动汽车用锂离子电池的热特性研究[D]. 北京:北京交通大学, 2018. Tan Q H. Thermal performance research on the lithium-ion batteries of electric vehicle[D]. Beijing:Beijing Jiaotong University, 2018.
[5] 张剑波, 卢兰光, 李哲. 车用动力电池系统的关键技术与学科前沿[J]. 汽车安全与节能学报, 2012, 3(2):87-104. Zhang J B, Lu L G, Li Z. Key technologies and fundamental academic issues for traction battery systems[J]. Journal of Automotive Safety and Energy, 2012, 3(2):87-104.
[6] Siddique A R M, Mahmud S, Heyst B V. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations[J]. Journal of Power Sources, 2018, 401:224-237.
[7] Li Y B, Zhou Z F, Wu W T. Three-dimensional thermal modeling of Li-ion battery cell and 50V Li-ion battery pack cooled by mini-channel cold plate[J]. Applied Thermal Engineering, 2019, 147:829-840.
[8] Kim G H, Gonder J, Lustbader J, et al. Thermal management of batteries in advanced vehicles using phase-change materials[J]. The World Electric Vehicle Journal. 2008, 2(2):134-147.
[9] 蔡飞龙, 许思传, 常国峰. 纯电动汽车用锂离子电池热管理综述[J].电源技术, 2012, 36(9):1410-1413. Cai F L, Xu S C, Chang G F. Thermal management techniques of lithium-ion battery pack for electric vehicles[J]. Chinese Journal of Power Sources, 2012, 36(9):1410-1413.
[10] 杨世春, 周思达, 张玉龙, 等. 车用锂离子电池直冷热管理系统用冷媒研究进展[J]. 北京航空航天大学学报:2019, 45(11):2123-2132. Yang S C,Zhou S D,Zhang Y L,et al.Review on refrigerant for direct-cooling thermal management system of lithium-ion battery for electric vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11):2123-2132.
[11] Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149:192-212.
[12] 王建, 郭航, 叶芳, 等. 热管散热装置对车用锂离子电池组内温度分布影响数值模拟[J]. 化工学报, 2016, 67(2):340-347. Wang J, Guo H, Ye F, et al. Numerical simulation of effect of heat pipe cooling device on temperature distribution in lithium-ion battery pack of vehicle[J]. CIESC Journal, 2016, 67(2):340-347.
[13] Tran T H, Harmand S, Desmet B, et al. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery[J]. Applied Thermal Engineering, 2014, 63:551-558.
[14] Wu M S, Liu K H, Wang Y Y, et al. Heat dissipation design for lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1):160-166.
[15] 张国庆, 吴忠杰, 饶中浩, 等. 动力电池热管冷却实验效果[J]. 化工进展, 2009, 28(7):1165-1168+1174. Zhang G Q, Wu Z J, Rao Z H, et al. Experimental investigation on heat pipe cooling effect for power battery[J]. Chemical Industry and Engineering Progress, 2009, 28(7):1165-1168+1174.
[16] Murashko K, Pyrhönen J, Laurila L. Optimization of the passive thermal control system of a lithium-ion battery with heat pipes embedded in an aluminum plate[C]. 15th European Conference on Power Electronics and Applications (EPE), Lille, 2013.
[17] 甘云华, 王建钦, 梁嘉林. 基于热管的圆柱形电池包冷却性能分析[J]. 化工学报, 2018, 69(5):1964-1971. Gan Y H, Wang J Q, Liang J L. Cooling performance of cylindrical battery pack based on thermal management system with heat pipe[J]. CIESC Journal, 2018, 69(5):1964-1971.
[18] Feng L Y, Zhou S, Li Y C, et al. Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling[J]. Journal of Energy Storage, 2018, 16:84-92.
[19] 胡春娇. 纯电动汽车锂离子电池模块设计及热特性分析[D]. 长沙:湖南大学, 2016. Hu C J. Battery module design and thermal characteristics analysis for the pure electric vehicle[D]. Changsha:Hunan University, 2016.
[20] Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery system[J]. Journal of the Electrochemical Society, 1985, 132(1):5-12.
[21] 李哲, 韩雪冰, 卢兰光, 等. 动力型磷酸铁锂电池的温度特性[J]. 机械工程学报, 2011, 47(18):115-120. Li Z, Han X B, Lu L G, et al. Temperature Characteristics of Power LiFePO4 Batteries[J]. Journal of Mechanical Engineering, 2011, 47(18):115-120.
[22] Zhang S J, Zhao R, Liu J, et al. Investigation on a hydrogel based passive thermal management system for lithium ion batteries[J]. Energy, 2014, 68:854-861.
[23] 谢小敏, 顾伯勤. 热管换热器模拟重要参数的选择[J]. 轻工机械, 2013, 31(3):23-27. Xie X M, Gu B Q. Calculation of certain important parameters in simulation of heat pipe exchanger[J]. Light Industry Machinery, 2013, 31(3):23-27.
[24] 闵小滕, 唐志国, 高钦, 等. 基于微小通道波形扁管的圆柱电池液冷模组散热特性[J]. 浙江大学学报(工学版), 2019, 53(3):463-469. Min X T, Tang Z G, Gao Q, et al. Heat dissipation characteristic of liquid cooling cylindrical battery module based on mini-channel wavy tube[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(3):463-469.
[25] E J Q, Han D D, Qiu A, et al. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system[J]. Applied Thermal Engineering, 2018, 132:508-520.
[26] 郭穗勋, 黄榕波. 正交试验层次分析法[J]. 大学数学, 2004(1):114-117. Guo S X, Huang R B. The AHP Method of Orthogonal Trial[J]. College Mathematics, 2004(1):114-117.
[27] Wang L, Sharkh S, Chipperfield A, et al. Dispatch of Vehicle-to-Grid Battery Storage Using an Analytic Hierarchy Process[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4):2952-2965.
[28] 冯青松, 孙魁, 罗信伟, 等. 现代有轨电车短枕埋入式轨道路基优化分析[J]. 铁道工程学报, 2018, 35(1):23-28. Feng Q S, Sun K, Luo X W, et al. Optimization Analysis of Short Sleeper Embedded Track Subgrade of Modern Tram[J]. 2018, 35(1):23-28.
[29] 郭阳东, 李玉芳, 张文浩, 等. 典型工况下动力电池温度特性研究[J]. 电源技术, 2018, 42(8):1143-1147. Guo Y D, Li Y F, Zhang W H, et al. Research on temperature performance of power battery under typical condition[J]. Chinese Journal of Power Sources, 2018, 42(8):1143-1147.
[30] Wei A B, Qu J, Qiu H H, et al. Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management[J]. International Journal of Heat and Mass Transfer, 2019, 135:746-760.
[1] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[2] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[3] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[4] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[5] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[6] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[7] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[8] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[9] 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
[10] 宋祺, 杨智, 陈颖, 罗向龙, 陈健勇, 梁颖宗. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553.
[11] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[12] 涂爱民, 刘世杰, 莫逊, 朱冬生, 尹应德. 螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究[J]. 化工学报, 2020, 71(4): 1562-1569.
[13] 王捷, 李圆, 赵海雷. 纳米颗粒组装三维Co3O4微米花材料制备及储锂性能研究[J]. 化工学报, 2020, 71(4): 1844-1850.
[14] 李敬, 杜刚, 殷娟娟. ZnxCo1-xCO3碳酸盐负极材料的制备及其电化学性能研究[J]. 化工学报, 2020, 71(3): 1390-1397.
[15] 周年勇, 徐慕豪, 冯浩, 段锋, 王庆荣, 陈海飞, 郭强. 闭式喷雾冷却的瞬态传热过程研究[J]. 化工学报, 2020, 71(3): 1018-1025.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!