化工学报

• •    下一篇

不混溶液体表面上蒸发液滴的动力学特性

李春曦, 庄立宇, 施智贤, 叶学民   

  1. 华北电力大学动力工程系, 河北, 保定, 071003
  • 收稿日期:2020-02-03 修回日期:2020-04-10 出版日期:2023-04-17 发布日期:2020-04-29
  • 通讯作者: 叶学民(1973-),男,博士,教授,yexuemin@163.com E-mail:yexuemin@163.com
  • 作者简介:李春曦(1973-),女,博士,教授,leechunxi@163.com
  • 基金资助:
    国家自然科学基金项目(51876065)

Dynamics of a volatile drop on the surface of another immiscible liquid

LI Chunxi, ZHUANG Liyu, SHI Zhixian, YE Xuemin   

  1. Department of Power Engineering, North China Electric Power University, Baoding 071003, China
  • Received:2020-02-03 Revised:2020-04-10 Online:2023-04-17 Published:2020-04-29

摘要: 针对不混溶均匀受热液体表面上蒸发液滴的动力学过程,基于润滑理论推导出了无量纲方程组。采用数值模拟方法,探究了蒸发液滴的动力学特性。结果表明,蒸发液滴的演化过程分为两个阶段:由"铺展主导"的液滴前进阶段和由"蒸发主导"的持续脉动振荡的后退阶段。液滴在低粘度比下的流动性更强,导致铺展更加迅速,粘度比的增加会导致铺展和收缩速率的降低。蒸发通过影响液滴界面的温度分布进而影响界面张力以及液滴铺展。相较于固体表面液滴蒸发出现的钉扎现象,蒸发液滴在不混溶液体表面上的铺展是去钉扎的,并且伴有液体基底的明显变形。

关键词: 蒸发, 液滴, 接触线, 界面张力

Abstract: Lubrication theory is used to derive dimensionless equations that govern the spreading dynamics of a volatile drop of one liquid floating on the surface of another immiscible liquid on a uniformly heated substrate. The dynamic characteristics of evaporation drop were studied by numerical simulation. The results show that the evolution process of the drop can be divided into two stages:the advancing stage of the drop dominated by spreading and the backward stage of the continuous fluctuating oscillation dominated by evaporation. The fluidity of drop is stronger at low viscosity ratio, which leads to more rapid spreading. The increase of viscosity ratio will lead to the decrease of spreading and shrinkage rate. Evaporation affects the interfacial tension and drop spreading by affecting the temperature distribution of the drop interfaces. Compared with the pinning phenomenon of drop evaporation on the solid surface, the spreading of evaporation drop on the immiscible liquid surface is depinning and accompanied by obvious deformation of the liquid substrate.

Key words: evaporation, drop, contact line, interface tension

中图分类号: 

  • TK124
[1] Craster R V, Matar O K. On the dynamics of liquid lenses[J]. Journal of Colloid and Interface Science, 2006, 303(2):503-516.
[2] 韦存茜, 严杰, 唐浩, 等. 灌注液体型光滑多孔表面制备及应用[J]. 化学进展, 2016, 28(1):9-17. Wei C X, Yan J, Tang H, et al. Fabrication and application of slippery liquid-infused porous surface[J]. Progress in Chemistry, 2016, 28(1):9-17.
[3] Harkins W D. The physical chemistry of surface films[M]. New York:Reinhold Pub, 1952.
[4] Foda M, Cox R G. The spreading of thin liquid films on a water-air interface[J]. Journal of Fluid Mechanics, 1980, 101(1):33-51.
[5] Sebilleau J. Equilibrium thickness of large liquid lenses spreading over another liquid surface[J]. Langmuir, 2013, 29(39):12118-12128.
[6] Nosoko T, Ohyama T, Mori Y H. Evaporation of volatile-liquid lenses floating on an immiscible-liquid surface:effects of the surface age and fluid purities in n-pentane/water system[J]. Journal of Fluid Mechanics, 1985, 161(-1):329.
[7] Rahman M R, Mullagura H N, Kattemalalawadi B, et al. Droplet spreading on liquid-fluid interface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 553:143-148.
[8] Shabani R, Kumar R, Cho H J. Droplets on liquid surfaces:Dual equilibrium states and their energy barrier[J]. Applied Physics Letters, 2013, 102(18):184101.
[9] Sun W, Yang F. Evaporation of a volatile liquid lens on the surface of an immiscible liquid[J]. Langmuir, 2016, 32(24):6058-6067.
[10] Liu L, Xu C, Zhao L, et al. Experimental and theoretical study of evaporation of a volatile liquid lens on an immiscible liquid surface[J]. Langmuir, 2019, 35(40):12979-12985.
[11] Dussaud A D, Troian S M. Dynamics of spontaneous spreading with evaporation on a deep fluid layer[J]. Physics of Fluids, 1998, 10(1):23-38.
[12] Buffone C. Formation, stability and hydrothermal waves in evaporating liquid lenses[J]. Soft Matter, 2019, 15(9):1970-1978.
[13] Shimizu Y, Mori Y H. Evaporation of single liquid drops in an immiscible liquid at elevated pressures:experimental study with n-pentane and R113 drops in water[J]. International Journal of Heat and Mass Transfer, 1988, 31(9):1843-1851.
[14] Sebilleau J, Lebon L, Limat L, et al. The dynamics and shapes of a viscous sheet spreading on a moving liquid bath[J]. Europhysics Letters, 2010, 92(1):14003.
[15] Noblin X, Buguin A, Brochard-Wyart F. Cascade of shocks in inertial liquid-liquid dewetting[J]. Physical Review Letters, 2006, 96(15):156101.
[16] Noblin X, Buguin A, Brochard-Wyart F. Fast dynamics of floating triple lines[J]. Langmuir, 2002, 18(24):9350-9356.
[17] Aveyard R, Clint J H, Nees D, et al. Size-dependent lens angles for small oil lenses on water[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 146(1-3):95-111.
[18] Wilkinson K M, Bain C D, Matsubara H, et al. Wetting of surfactant solutions by alkanes[J]. Chemphyschem A European Journal of Chemical Physics & Physical Chemistry, 2005, 6(3):547-555.
[19] Chen L, Jeng J, Robert M, et al. Experimental study of interfacial phase transitions in three-component surfactant systems[J]. Physical Review A, 1990, 42(8):4716.
[20] Style R W, Dufresne E R. Static wetting on deformable substrates, from liquids to soft solids[J]. Soft Matter, 2012, 8(27):7177-7184.
[21] Burton J C, Huisman F M, Alison P, et al. Experimental and numerical investigation of the equilibrium geometry of liquid lenses[J]. Langmuir, 2010, 26(19):15316-15324.
[22] Greco E F, Grigoriev R O. Thermocapillary migration of interfacial droplets[J]. Physics of Fluids, 2009, 21(4):42105.
[23] George D, Damodara S, Iqbal R, et al. Flotation of denser liquid drops on lighter liquids in non-neumann condition:role of line tension[J]. Langmuir, 2016, 32(40):10276-10283.
[24] Phan C M, Allen B, Peters L B, et al. Can water float on oil?[J]. Langmuir, 2012, 28(10):4609-4613.
[25] Guan J H, Wells G G, Xu B, et al. Evaporation of sessile droplets on slippery liquid-infused porous surfaces (slips)[J]. Langmuir, 2015, 31(43):11781-11789.
[26] Brochard-Wyart F, Debrégeas G, de Gennes P G. Spreading of viscous droplets on a non viscous liquid[J]. Colloid and Polymer Science, 1996, 274(1):70-72.
[27] Gelderblom H, Stone H A, Snoeijer J H. Stokes flow in a drop evaporating from a liquid subphase[J]. Physics of Fluids, 2013, 25(10):102102.
[28] Bresme F, Quirke N. Computer simulation studies of liquid lenses at a liquid-liquid interface[J]. The Journal of Chemical Physics, 2000, 112(13):5985-5990.
[29] Kriegsmann J J, Miksis M J. Steady motion of a drop along a liquid interface[J]. SIAM Journal on Applied Mathematics, 2003, 64(1):18-40.
[30] Pujado P R, Scriven L E. Sessile lenticular configurations:translationally and rotationally symmetric lenses[J]. Journal of Colloid and Interface Science, 1972, 40(1):82-98.
[31] Hong J, Kim Y K, Kang K H, et al. Effects of drop size and viscosity on spreading dynamics in DC electrowetting[J]. Langmuir, 2013, 29(29):9118-9125.
[1] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[2] 李睿, 张以任, 陈杭, 路贵民, 于建国. 二元液滴自由碰撞聚并后的振荡行为研究[J]. 化工学报, 2020, 71(4): 1482-1490.
[3] 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008.
[4] 付涛涛, 朱春英, 马友光. 微通道内卫星液滴生成机理与惯性分离机制[J]. 化工学报, 2020, 71(2): 451-458.
[5] 刘燕青, 胡听听, 鲁落义, 王维, 邹昀, 童张法. PDMS/ZSM-5膜的制备及渗透汽化分离水中乙酸正丁酯和乙酸乙酯[J]. 化工学报, 2020, 71(2): 843-853.
[6] 李琳, 夏淑倩, 商巧燕, 马沛生. CO2-环烷烃/芳香烃界面张力的测定与估算[J]. 化工学报, 2020, 71(1): 254-264.
[7] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[8] 闫磊, 陈思宇, 肖美良子, 丁伟. 煤制烯烃基长链烷基二甲苯合成研究[J]. 化工学报, 2019, 70(S1): 235-241.
[9] 陈宏霞, 肖红洋, 孙源, 刘霖. 微柱表面液滴定壁温沸腾实验研究[J]. 化工学报, 2019, 70(9): 3363-3369.
[10] 叶学民, 李明兰, 张湘珊, 杨少东, 李春曦. 平板浸涂过程中的液膜排液影响因素[J]. 化工学报, 2019, 70(6): 2164-2173.
[11] 尚良超, 陈晓东, 肖杰. 喷雾干燥颗粒表面形貌形成过程粗粒化模拟[J]. 化工学报, 2019, 70(6): 2153-2163.
[12] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[13] 范亚茹, 陈志豪, 赵彦杰, 宇高义郎. 混合蒸气冷凝过程中均匀温度面上液滴自发移动现象及特性[J]. 化工学报, 2019, 70(4): 1358-1366.
[14] 张航, 翁建华, 崔晓钰. 吸湿性盐溶液振荡热管的传热特性研究[J]. 化工学报, 2019, 70(3): 874-882.
[15] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!