化工学报 ›› 2020, Vol. 71 ›› Issue (5): 2049-2060.doi: 10.11949/0438-1157.20191351

• 流体力学与传递现象 • 上一篇    下一篇

外露管式熔盐吸热器动静态特性研究

徐玫(),彭怀午,牛东圣,王晓,肖斌,周治,段杨龙,张俊峰   

  1. 中国电建集团西北勘测设计研究院有限公司,陕西 西安 710000
  • 收稿日期:2019-11-08 修回日期:2020-03-13 出版日期:2020-05-05 发布日期:2020-04-29
  • 通讯作者: 徐玫 E-mail:920506307@qq.com
  • 作者简介:徐玫(1989—),女,硕士,工程师,920506307@qq.com

Study on dynamic and static performance of external tubular molten salt receiver

Mei XU(),Huaiwu PENG,Dongsheng NIU,Xiao WANG,Bin XIAO,Zhi ZHOU,Yanglong DUAN,Junfeng ZHANG   

  1. Powerchina Norhwest Engineering Corporation Limited, Xi’an 710000, Shaanxi, China
  • Received:2019-11-08 Revised:2020-03-13 Online:2020-05-05 Published:2020-04-29
  • Contact: Mei XU E-mail:920506307@qq.com

摘要:

以某50 MW塔式光热发电项目外露管式熔盐吸热器为研究对象,进行了建模,通过理想条件下的动静态仿真和实际气象条件下的模拟,给出吸热器特性参数的动静态响应曲线,提出了吸热器出口盐温控制的改进方法,分析了其在实际气象条件下的运行特点,总结了以下规律:吸热器表面最高温度、温度梯度、散热功率与太阳法向直射辐照度的变化基本呈正比关系;效率随太阳法向直射辐照度增大而升高但斜率逐渐减小;风速主要影响对流散热功率;太阳法向直射辐照度扰动下吸热器出口熔盐温度、表面最高温度、散热功率的过渡过程响应时间较吸热管轴向温度梯度更长,效率在瞬间突变后会重新逐渐回复到接近扰动前的水平;流量阶跃下降对吸热器性能影响更大。利用吸热器特性参数与太阳法向直射辐照度和熔盐流量三者间的定量关系可改进运行中的熔盐流量调整策略。

关键词: 太阳能, 辐射, 传热, 外露管式熔盐吸热器, 动静态特性

Abstract:

A 50 MW external tubular molten salt receiver model is developed for simulating the dynamic and static performance of the receiver in ideal conditions and actual meteorological conditions. The response curve is given to show that the maximum surface temperature, temperature gradient, and heat dissipation power of the receiver are basically proportional to the changes in direct normal irradiance (abbreviated as DNI); the efficiency grows with increase in direct normal irradiance, and the slope, however, decreases; wind speed mainly affects convection heat dissipation power; in the presence of direct normal irradiance step disturbance, the response time of the molten salt outlet temperature, the maximum surface temperature and the heat dissipation power of the receiver is longer than that of the receiver tube axial temperature gradient, and gradually the efficiency returns approximately to the level before a sudden change; flow step down have a greater impact on the receiver performance. Using the quantitative relationship between the characteristic parameters of the heat sink and the direct solar irradiance and molten salt flux can improve the molten salt flux adjustment strategy in operation.

Key words: solar energy, radiation, heat transfer, external tubular molten salt receiver, dynamic and static performance

中图分类号: 

  • TK 513

图1

典型熔盐吸热器工艺流程"

图2

典型外露管式熔盐吸热器管屏结构"

图3

单吸热管微元模型"

图4

管壁换热模型"

表1

Solar Two吸热器结构参数"

参数数值
额定功率/MW42.2
吸热管长度/m6.2
管屏数目24
各管屏吸热管数目32
吸热器直径/m5.1
吸热管外径/m0.025
吸热管壁厚/m0.00125

表2

仿真结果与测试结果对比"

工况工况参数模型计算结果验证
环境温度/℃风速/(m/s)平均能流密度/(kW/m2熔盐流量/(kg/s)入口熔盐温度/℃实测出口熔盐温度/℃计算出口熔盐温度/℃偏差/%实测效率计算效率偏差/%
1320.6341802945555560.180.8880.8950.80
2331.2372903005525550.540.8840.8991.64
3331373903045565600.690.880.8982.05
414228967302564562-0.340.8810.878-0.34
5183.2340783035645670.550.8740.8820.92
6180.9302693015645670.450.870.8841.63
7172.5311702985645670.550.8710.8271.04

图5

额定工况吸热器能流密度分布/(kW/m2)"

图6

额定工况吸热器表面温度分布/℃"

图8

额定工况吸热器表面散热功率密度/(MW/m2)"

图7

额定工况吸热管温度梯度分布/(℃/m)"

图9

吸热器特性随太阳法向直射辐照度变化"

图10

散热功率随风速变化曲线"

图11

吸热器特性随流量变化曲线"

图12

太阳法向直射辐照度阶跃扰动下吸热器特性参数变化"

图13

吸热器流动路径1出口盐温在太阳法向直射辐照度阶跃上升20%时的变化"

图14

吸热器表面温度在太阳法向直射辐照度阶跃上升20%时的变化/%"

图15

流量阶跃扰动下吸热器特性参数变化"

图16

吸热器流动路径1串联模块出口盐温在流量阶跃下降20%时的变化"

图17

吸热器表面温度在流量阶跃下降20%时的变化/%"

表3

太阳法向直射辐照度变化百分比与吸热器特性变化百分比关系函数多项式系数"

系数

出口熔盐温度变化

百分比/%

吸热器表面最高温度

变化百分比/%

吸热器散热功率变化

百分比/%

最高轴向温度梯度变化百分比/%效率变化百分比/%
二次项系数-0.00009-0.000370.00231-0.00049-0.00024
一次项系数0.451230.472370.811030.949770.01107
常数项0.002860.002510.00286-0.00004-0.00017

表4

熔盐流量变化百分比与吸热器特性变化百分比关系函数多项式系数"

系数

出口熔盐温度变化

百分比/%

吸热器表面最高温度

变化百分比/%

吸热器散热功率变化

百分比/%

最高轴向温度梯度变化百分比/%效率变化百分比/%
二次项系数0.040760.036550.017620.015976.29842
一次项系数-2.18062-2.19347-1.32236-1.2685124.86554
常数项0.056390.050550.133190.464360.13108

图18

吸热器出口盐温控制的传统做法和改进做法对比"

图19

多云天气象参数及吸热器特性参数变化曲线"

1 Lovegrove K, Watt M, Passey R, et al. Realising the potential of concentrating solar power in Australia: summary for stakeholders[R]. Australia: Australian Solar Institute Pty. Ltd., 2012.
2 Franchini G, Perdichizzi A, Ravelli S, et al. A comparative study between parabolic trough and solar tower technologies in solar rankine cycle and integrated solar combined cycle plants[J]. Solar Energy, 2013, 98(pt. C): 302-314.
3 Wagner S J, Rubin E S. Economic implications of thermal energy storage for concentrated solar thermal power[J]. Renewable Energy, 2014, 61(1): 81-95.
4 Tehrani S S M, Taylor R A, Nithyanandam K, et al. Annual comparative performance and cost analysis of high temperature, sensible thermal energy storage systems integrated with a concentrated solar power plant[J]. Solar Energy, 2017, 153(1): 153-172.
5 Collado F J, Gómez A, Turégano J A. An analytic function for the flux density due to sunlight reflected from a heliostat[J]. Solar Energy, 1986, 37(3): 215-234.
6 陈将. 塔式太阳能热电系统的聚光仿真与聚焦策略优化[D]. 杭州: 浙江大学, 2015.
Chen J. Concentrating simulation and aiming strategy optimization of solar tower power system[D]. Hangzhou: Zhejiang University, 2015.
7 常春, 张强强, 李鑫. 周向非均匀热流边界条件下太阳能高温吸热管内湍流传热特性研究[J]. 中国电机工程学报, 2012, 32(17): 104-109.
Chang C, Zhang Q Q, Li X. Turbulent heat transfer characteristics in solar thermal absorber tubes with circumferentially non-uniform heat flux boundary condition[J]. Proceedings of the CSEE, 2012, 32(17): 104-109.
8 Zheng Z J, Li M J, He Y L. Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux[J]. Applied Energy, 2017, 185(2): 1152-1161.
9 Prairie M R, Pacheco J E, Gilbert R L, et al. Performance of the solar two central receiver power plant[R]. Albuquerque: Sandia National Laboratories, 1998.
10 Litwin R Z. Receiver system: lessons learned from solar two[R]. Albuquerque: Sandia National Laboratories, 2002.
11 盛玲霞, 李佳燕, 赵豫红. 塔式太阳能电站接收器的建模及动态仿真[J]. 化工学报, 2016, 67(3): 737-742.
Sheng L X, Li J Y, Zhao Y H. Modeling and dynamic simulation of receiver in a solar tower power station[J]. CIESC Journal, 2016, 67(3): 737-742.
12 王建楠, 李鑫, 常春. 太阳能塔式热发电站熔融盐吸热器过热故障的影响因素分析[J]. 中国电机工程学报, 2010, 30(29): 107-114.
Wang J N, Li X, Chang C. Analysis of the influence factors on the overheat of molten salt receiver in solar tower power plants[J]. Proceedings of the CSEE, 2010, 30(29): 107-114.
13 Du B C, He Y L, Zheng Z J, et al. Analysis of thermal stress and fatigue fracture for the solar tower molten salt receiver[J]. Applied Thermal Engineering, 2016, 99: 741-750.
14 刘占斌, 何雅玲, 王坤, 等. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336.
Liu Z B, He Y L, Wang K, et al. Research on effects of foam filling types on heat transfer of supercritical CO2 flow in tube[J]. CIESC Journal, 2019, 70(9): 3329-3336.
15 张莉, 方嘉宾, 魏进家. 圆锥螺旋管腔式熔融盐吸热器热性能的数值研究[J]. 太阳能学报, 2019, 48(7): 1832-1836.
Zhang L, Fang J B, Wei J J. Numerical study on a conical spiral tube cavity receiver with molten salt[J]. Acta Energiae Solaris Sinica, 2019, 48(7): 1832-1836.
16 沈向阳, 张奇淄, 陆建峰, 等. 熔盐吸热管非稳态对流换热特性[J]. 化工学报, 2012, 63(5): 36-40.
Shen X Y, Zhang Q Z, Lu J F, et al. Unsteady convective heat transfer performances of molten salt in receiver tube [J]. CIESC Journal, 2012, 63(5): 36-40.
17 王沛, 李嘉宝, 赵亮, 等. 塔式太阳能熔盐吸热器传热特性及分析[J]. 中国电机工程学报, 2019, 39(12): 3605-3613.
Wang P, Li J B, Zhao L, et al. Thermal and exergy performance of molten salt external cylindrical receiver of solar power towers[J]. Proceedings of the CSEE, 2019, 39(12): 3605-3613.
18 郑建涛, 严俊杰, 韩临武, 等. 多点聚焦的太阳能柱式吸热器能流分布研究[J]. 中国电机工程学报, 2015, 35(11): 2796-2803.
Zheng J T, Yan J J, Han L W, et al. Analysis of the solar thermal cylinder receiver heat flux distribution under multi-aiming point strategy[J]. Proceedings of the CSEE, 2015, 35(11): 2796-2803.
19 Tehrani S S M, Taylor R A. Off-design simulation and performance of molten cavity receivers in solar tower plants under realistic operational modes and control strategies[J]. Applied Energy, 2016, 179(1): 698-715.
20 Xu E S, Yu Q, Wang Z F, et al. Modeling and simulation of 1MW DAHAN solar thermal power tower plant[J]. Renewable Energy, 2011, 36(2): 848-857.
21 徐二树, 余强, 杨志平, 等. 塔式太阳能热发电腔式吸热器动态仿真模型[J]. 中国电机工程学报, 2010, 30(32): 115-120.
Xu E S, Yu Q, Yang Z P, et al. Solar thermal power tower cavity receiver dynamic simulation mode[J]. Proceedings of the CSEE, 2010, 30(32):115-120.
22 高维, 徐蕙, 徐二树, 等. 塔式太阳能热发电吸热器运行安全性研究[J]. 中国电机工程学报, 2013, 33(2): 92-97.
Gao W, Xu H, Xu E S, et al. Research on operation security of solar thermal tower plant receiver[J]. Proceedings of the CSEE, 2013, 33(2): 92-97.
23 张强强, 李鑫, 常春, 等. 多云气象条件下熔融盐腔式吸热器的热性能分析[J]. 中国电机工程学报, 2014, 34(8): 1291-1296.
Zhang Q Q, Li X, Chang C, et al. Thermal performance analysis of molten salt cavity receivers under cloudy conditions[J]. Proceedings of the CSEE, 2014, 34(8): 1291-1296.
24 邹琴梅. 塔式太阳能熔盐吸热器的传热特性研究与设计[D]. 杭州: 浙江大学, 2014.
Zou Q M. Study of flow and heat transfer performance and design of molten receiver in solar power plants[D]. Hangzhou: Zhejiang University, 2014.
25 王幸智. 外露管式太阳能熔盐吸热器的传热研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
Wang X Z. Research on heat transfer performance of external tubular receiver using molten salt as HTF for tower solar plant[D]. Harbin: Harbin Institute of Technology, 2013.
26 李嘉宝, 王沛, 赵亮. 基于分布参数模型的塔式熔盐吸热器换热过程动态特性研究[J]. 可再生能源, 2018, 36(7): 991-996.
Li J B, Wang P, Zhao L. Study on dynamic characteristics of heat exchange process of a tower type molten salt receiver based on distributed parameter model[J]. Renewable Energy Resources, 2018, 36(7): 991-996.
27 Duffie J A, Beckman W A. Solar Engineering of Thermal Processes[M]. Hoboken: John Wiley and Sons Inc., 2006: 148.
28 Pacneco J E, Bradshaw R W, Dawson D B, et al. Final test and evaluation results from the solar two project[R]. Albuquerque: Sandia National Laboratories, 2001.
29 武君, 卢日时, 赵欢欢, 等. 塔式太阳能热发电吸热器技术进展[J]. 应用能源技术, 2013, 33(2): 36-41.
Wu J, Lu R S, Zhao H H, et al. The development of solar center receivers for solar power tower[J]. Applied Energy Technology, 2013, 33(2): 36-41.
30 Yang M L, Yang X X, Zhang S S. Performance comparisons of solar central receivers and working fluids for solar power tower systems[J]. Journal of Shaanxi University of Science&Technology(Natural Science Edition), 2008, 26(5): 21-27.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[3] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[4] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[5] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[6] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[7] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[8] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[9] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[10] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[11] 杜伯尧, 全贞花, 侯隆澍, 赵耀华, 任海波. 新型光伏直膨式太阳能/空气能多能互补热泵性能[J]. 化工学报, 2020, 71(S1): 368-374.
[12] 马坤茹, 李雪峰, 李思琦, 高翠娟. 新型太阳能/空气能直膨式热泵与空气源热泵供热性能对比[J]. 化工学报, 2020, 71(S1): 375-381.
[13] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[14] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[15] 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黎新明, 崔英德. Study on Synthesis and Chloramphenicol Release of Poly(2-hydroxyethylmethacrylate-co-acrylamide)Hydrogels[J]. CIESC Journal, 2008, 16(4): 640 -645 .
[2] 李传兆,张敏华,董秀芹,谈遒. 双酚A-苯酚加合物结晶动力学 [J]. CIESC Journal, 1999, 50(2): 185 -190 .
[3] 刘春江,王利东,袁希钢,余国琮. 规整填料在加压精馏中的传质性能 [J]. CIESC Journal, 2001, 52(1): 13 -14 .
[4] 吴祥龙,刘植榕,章登植,黎揚善,李浩. 橡胶厚制品硫化 [J]. CIESC Journal, 1959, 10(2): 108 -123 .
[5] 秦炜,张英,罗学辉,戴猷元. 草酸与乙醛酸的萃取分离 [J]. CIESC Journal, 2001, 52(2): 135 -140 .
[6] 陈家镛,夏光祥. 氧化铜与二氧化硫及氧作用生成硫酸铜的动力学 [J]. CIESC Journal, 1965, 16(1): 1 -12 .
[7] 路秀林,丁伯民,璩定一. 泡罩齿缝张开程度与空气流量的关系 [J]. CIESC Journal, 1965, 16(3): 179 -190 .
[8] 潘敏强, 汤勇, 陆龙生, 潘亮, 曾德怀. 非等宽微通道阵列速度均布的优化设计 [J]. 化工学报, 2007, 58(9): 2183 -2189 .
[9] 王维龙;杨晓西;方玉堂;丁静;杨建平.

聚乙二醇/二氧化硅定形相变材料的制备

[J]. CIESC Journal, 2007, 58(10): 2664 -2668 .
[10] 刘毅, 王海清, 李平. 局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用 [J]. 化工学报, 2007, 58(11): 2846 -2851 .