化工学报

• •    

规整有机分子自聚集体对铜的高效缓蚀的研究

罗雪1, 荆川1, 黄海军1, 李红茹1, 王治永1, 王震强1,2, 高放1, 张胜涛1   

  1. 1 重庆大学化学化工学院, 重庆 400044;
    2 重庆师范大学化学学院, 重庆, 401331
  • 收稿日期:2019-11-11 修回日期:2020-03-28 出版日期:2023-04-17 发布日期:2020-04-22
  • 通讯作者: 高放(1971-),男,博士,教授,fanggao1971@gmail.com E-mail:fanggao1971@gmail.com
  • 作者简介:罗雪(1994-),女,硕士研究生,xueluo1994@163.com;荆川(1991-),男,博士研究生,493753698@qq.com
  • 基金资助:
    国家自然科学基金项目(21376282,21676035,21878029);重庆大学研究生创新基金项目(CYB18046);中国博士后科学基金项目(22012T50762,2011M501388);重庆市自然科学基金项目(cstc2018jcyjAX0668)

Study of highly efficient corrosion inhibition of copper by regular self-aggregates of an organic molecule

LUO Xue1, JING Chuan1, HUANG Haijun1, LI Hongru1, WANG Zhiyong1, WANG Zhenqiang1,2, GAO Fang1, ZHANG Shengtao1   

  1. 1 College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China;
    2 College of Chemistry, Chongqing Normal University, Chongqing 401331, China
  • Received:2019-11-11 Revised:2020-03-28 Online:2023-04-17 Published:2020-04-22

摘要: 本文通过多步法合成了离子型含双苯并三氮唑环的目标分子,4,4'-{苯-1,3-二基二[(1E)-3-羰基丙-1-烯-1,3-二基]}二[2-(2H-苯并三唑-2-基)苯醇酸]二钾。在室温条件下,目标分子在3.5%(质量)NaCl/DMSO(二甲基亚枫)混合溶液(体积比:40/60)中能够发生分子自组装产生纳-微米级的自聚集体。通过傅里叶变换红外光谱(FT-IR)、拉曼光谱和X-射线光电子能谱(XPS)的表征,证实了所形成的目标分子自聚集体能够对铜表面的产生强烈的化学吸附作用,在铜表面形成自组装膜。利用电化学方法测定了目标分子自聚集体吸附在铜表面形成自组装膜后,在3.5%(质量)NaCl溶液中的缓蚀性能。结果表明目标分子自聚集体在NaCl溶液中能高效地抑制铜腐蚀。

关键词: 自聚集, 吸附, 铜, NaCl溶液, 腐蚀, 修复

Abstract: This study presents synthesis of target ionic bistriazole rings-based molecule, 4,4'-{benzene-1,3-diylbis[(1E)-3-oxoprop-1-ene-1,3-diyl]}bis[2-(2H-benzotriazol-2-yl)phenolate] dipotassium (BDBD), through multi-step preparation route. At room temperature, the target molecule can self-assemble to produce nano-micron self-aggregates in a 3.5 wt.% NaCl/DMSO (dimethyl maple) mixed solution (v/v, 40/60). It is shown that the predominantly strong chemical adsorption of the formed molecular self-aggregates on the studied copper specimen leads to the yield of self-assembly film on copper surface, which is characterized by FT-IR, Raman and XPS spectroscopy. The corrosion inhibition performance of the stable self-aggregates adsorbed-copper specimens in 3.5 wt.% brine solution based on electrochemical method is surveyed. The results show that the target molecular self-aggregates can effectively inhibit copper corrosion in NaCl solution.

Key words: self-aggregation, adsorption, copper, brine solution, corrosion, repair

中图分类号: 

  • TG178
[1] Fan H, Li S, Zhao Z, et al. Inhibition of brass corrosion in sodium chloride solutions by self-assembled silane films[J]. Corrosion Science, 2011, 53:4273-4281.
[2] Lyon S B, Bingham R, Mills Douglas J. Advances in corrosion protection by organic coatings:what we know and what we would like to know[J]. Progress in Organic Coatings, 2017, 102:2-7.
[3] Kokalj A, Peljhan S. Density functional theory study of ATA, BTAH, and BTAOH as copper corrosion inhibitors:adsorption onto Cu(111) from gas phase[J]. Langmuir, 2010, 26:14582-14593.
[4] Finsgar M. 2-Mercaptobenzimidazole as a copper corrosion inhibitor:Part I. Long-term immersion, 3D-profilometry, and electrochemistry[J]. Corrosion Science, 2013, 72:82-89.
[5] Finsgar M. EQCM and XPS analysis of 1,2,4-triazole and 3-amino-1,2,4-triazole as copper corrosion inhibitors in chloride solution[J]. Corrosion Science, 2013, 77:350-359.
[6] Wang Z, Gong Y, Jing C, et al. Synthesis of dibenzotriazole derivatives bearing alkylene linkers as corrosion inhibitors for copper in sodium chloride solution:A new thought for the design of organic inhibitors[J]. Corrosion Science, 2016, 113:64-77.
[7] Sherif M E S. Effects of 2-amino-5-(ethylthio)-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in 3% NaCl solutions[J]. Applied Surface Science, 2006, 252:8615-8623.
[8] Hong S, Chen W, Zhang Y, et al. Investigation of the inhibition effect of trithiocyanuric acid on corrosion of copper in 3.0wt.% NaCl[J]. Corrosion Science, 2013, 66:308-314.
[9] Izquierdo J, Santana J J, González S, et al. Uses of scanning electrochemical microscopy for the characterization of thin inhibitor films on reactive metals:The protection of copper surfaces by benzotriazole[J]. Electrochimica Acta, 2010, 55:8791-8800.
[10] Jafari A H, Hosseini S M A, Jamalizadeh E. Investigation of smart nanocapsules containing inhibitors for corrosion protection of copper[J]. Electrochimica Acta, 2010, 55:9004-9009.
[11] Khaled K F. Studies of the corrosion inhibition of copper in sodium chloride solutions using chemical and electrochemical measurements[J]. Materials Chemistry and Physics, 2011, 125:427-433.
[12] Li C C, Guo X. Y, Shen S,et al. Adsorption and corrosion inhibition of phytic acid calcium on the copper surface in 3wt% NaCl solution[J]. Corrosion Science, 2014, 83:147-154.
[13] Liu Y, Li S, Zhang J, et al. Corrosion inhibition of biomimetic super-hydrophobic electrodeposition coatings on copper substrate[J]. Corrosion Science, 2015, 94:190-196.
[14] Khiati Z, Othman A A, Sanchez-Moreno M, et al. Corrosion inhibition of copper in neutral chloride media by a novel derivative of 1,2,4-triazole[J]. Corrosion Science, 2011, 53:3092-3099.
[15] Wang B, Gao F, Ma H. Preparation and XPS studies of macromolecule mixed-valent Cu(I, II) and Fe(II, III) complexes[J]. Journal of Hazardous Materials, 2007, 144:363-368.
[16] Doong R A, Liao C Y. Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method[J]. Journal of Hazardous Materials, 2017, 322:254-262.
[17] Huang H, Fu Y, Wang X, et al. Nano-to micro-self-aggregates of new bisimidazole-based copoly(ionic liquid)s for protecting copper in aqueous sulfuric acid solution[J]. ACS Applied Materials & Interfaces, 2019, 11:10135-10145.
[18] Zhang D Q, Joo H G, Lee K Y. Investigation of molybdate-benzotriazole surface treatment against copper tarnishing[J]. Surface and Interface Analysis, 2009, 41:164-169.
[19] Lou W, Cai W, J P Li, et al. Additives-assisted electrodeposition of fine spherical copper powder from sulfuric acid solution[J]. Powder Technology, 2018, 326:84-88.
[20] Sherif E S M, Erasmus R M, Comins J D. In situ Raman spectroscopy and electrochemical techniques for studying corrosion and corrosion inhibition of iron in sodium chloride solutions[J]. Electrochimica Acta, 2010, 55:3657-3663.
[21] Sudheer M A Q, Electrochemical and theoretical investigation of triazole derivatives on corrosion inhibition behavior of copper in hydrochloric acid medium[J]. Corrosion Science, 2013, 70:161-169.
[22] Mihajlovic M B P, Radovanovic M B, Tasic Z Z, et al. Imidazole based compounds as copper corrosion inhibitors in seawater[J]. Journal of Molecular Liquids, 2017, 225:127-136.
[23] Qafsaoui W, Kendig M W, Perrot H, et al. Coupling of electrochemical techniques to study copper corrosion inhibition in 0.5 molL-1 NaCl by 1-pyrrolidine dithiocarbamate[J]. Electrochimica Acta, 2013, 87:348-360.
[24] 张景玲. 苯并三氮唑复配体系对铜的协同缓蚀性能的研究[D]. 长沙:湖南大学, 2008. Zhang J L. Investigation of the synergistic effect between BTA and its composite corrosion inhibitiors on copper[D]. Changsha:HuNan University, 2008.
[25] Zhang D Q, Gao L X, Zhou G D. Inhibition of copper corrosion by bis-(1-benzotriazolymethylene)-(2,5-thiadiazoly)-disulfide in chloride media[J]. Applied Surface Science, 2004, 225:287-293.
[26] Singh M M, Rastogi R B, Upadhyay B N, et al. Thiosemicarbazide, phenyl isothiocyanate and their condensation product as corrosion inhibitors of copper in aqueous chloride solutions[J]. Materials Chemistry and Physics, 2003, 80:283-293.
[27] Hu L, Zhang S, Li W, et al. Electrochemical and thermodynamic investigation of diniconazole and triadimefon as corrosion inhibitors for copper in synthetic seawater[J]. Corrosion Science, 2010, 52:2891-2896.
[28] Qiang Y, Zhang S, Yan S, et al. Three indazole derivatives as corrosion inhibitors of copper in a neutral chloride solution[J]. Corrosion Science, 2017, 126:295-304.
[29] Solomon M M, Umoren S A. In-situ preparation, characterization and anticorrosion property of polypropylene glycol/silver nanoparticles composite for mild steel corrosion in acid solution[J]. Journal of Colloid and Interface Science, 2016, 462:29-41.
[30] Scendo M. Inhibition of copper corrosion in sodium nitrate solutions with nontoxic inhibitors[J]. Corrosion Science, 2008, 50:1584-1592.
[31] Scendo M. The effect of purine on the corrosion of copper in chloride solutions[J]. Corrosion Science, 2007, 49:373-390.
[32] Mendonça G L F, Costa S N, Freire V N, et al. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods[J]. Corrosion Science, 2017, 115:41-55.
[33] Zhang J, Liu Z, Han G C, et al. Inhibition of copper corrosion by the formation of Schiff base self-assembled monolayers[J]. Applied Surface Science, 2016, 389:601-608.
[1] 涂爱民, 刘世杰, 莫逊, 朱冬生, 尹应德. 螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究[J]. 化工学报, 2020, 71(4): 1562-1569.
[2] 亓士超, 朱蓉蓉, 刘昕, 薛丁铭, 刘晓勤, 孙林兵. 乙二胺不同掺杂模式下多孔有机聚合物对CO2的吸附[J]. 化工学报, 2020, 71(4): 1666-1675.
[3] 万豫, 张敏, 翁云宣, 李成涛. 酵母菌的致孔作用对PVA/CMC水凝胶性能的影响[J]. 化工学报, 2020, 71(4): 1828-1835.
[4] 李安玉, 李双莉, 余碧戈, 马爱英, 周鑫兰, 谢建慧, 蒋艳红, 邓华. 镁浸渍生物炭吸附氨氮和磷:制备优化和吸附机理[J]. 化工学报, 2020, 71(4): 1683-1695.
[5] 龚志明, 王瑞祥, 邢美波. 全氟烷基表面活性剂吸附特性研究[J]. 化工学报, 2020, 71(4): 1754-1761.
[6] 林帝出, 杨佳薇, 邓玉莹, 戴敏, 郑西来, 彭昌盛. 滴定-凝胶法制备球形水凝胶吸附材料及其在废水处理中的应用[J]. 化工学报, 2020, 71(3): 914-922.
[7] 王湘月, 周晓君, 阳春华. 不确定条件下的湿法炼锌除铜过程机会约束优化控制[J]. 化工学报, 2020, 71(3): 1226-1233.
[8] 杨鑫宇, 吴杰, 张建庭, 吴纯鑫, 赵德明. 功能化磁性纳米复合材料Fe3O4-mPD/SP吸附Cr(Ⅵ)研究[J]. 化工学报, 2020, 71(3): 1060-1071.
[9] 郭佳明, 刘明言, 吴强, 马永丽. 硝酸锂改性钛系离子筛的制备及其吸附性能[J]. 化工学报, 2020, 71(2): 879-888.
[10] 邢瑞, 江南, 刘冰, 安亚雄, 汪亚燕, 张东辉. 基于MPC控制技术优化VPSA制氧工艺的模拟[J]. 化工学报, 2020, 71(2): 669-679.
[11] 李扬, 张扬, 陈宣龙, 龚勋. 钙基吸附剂循环吸附性能对增强式生物质气化制氢的影响研究[J]. 化工学报, 2020, 71(2): 777-787.
[12] 高君安, 王伟, 张傑, 雷志刚, 史东军, 曲令多. 用于高湿度废气中甲苯吸附净化的疏水型ZSM-5分子筛的合成及其吸附性能研究[J]. 化工学报, 2020, 71(1): 337-343.
[13] 张光华, 董秋辰, 刘晶. 多苯环双子季铵盐在油水两相中的传质性能[J]. 化工学报, 2019, 70(S1): 61-68.
[14] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[15] 徐胜, 刘玲利, 曹锰, 张尚玺, 戴欣, 柳阳, 王振希. PVA/ZnO复合材料“骨架支撑”型孔道构建及铅离子吸附[J]. 化工学报, 2019, 70(S1): 130-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!