化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3345-3353.doi: 10.11949/0438-1157.20200143

• 材料化学工程与纳米技术 • 上一篇    下一篇

ZSM-5沸石膜用于生物油的脱水分离及其再生过程研究

马珊宏1(),叶枫2,王燕鸿2,郎雪梅2,樊栓狮2,李刚2()   

  1. 1.华南理工大学轻工科学与工程学院,广东 广州 510641
    2.华南理工大学化学与化工学院,广东 广州 510641
  • 收稿日期:2020-02-15 修回日期:2020-04-16 出版日期:2020-07-05 发布日期:2020-04-17
  • 通讯作者: 李刚 E-mail:70452121504@qq.com;fegli@scut.edu.cn
  • 作者简介:马珊宏(1994—),男,硕士研究生,70452121504@qq.com
  • 基金资助:
    国家自然科学基金项目(21506067)

Permeation properties and regeneration of a ZSM-5 zeolite membrane for bio-oil dehydration

Shanhong MA1(),Feng YE2,Yanhong WANG2,Xuemei LANG2,Shuanshi FAN2,Gang LI2()   

  1. 1.School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
    2.School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
  • Received:2020-02-15 Revised:2020-04-16 Online:2020-07-05 Published:2020-04-17
  • Contact: Gang LI E-mail:70452121504@qq.com;fegli@scut.edu.cn

摘要:

在水热条件下通过无模板剂法合成了连续的ZSM-5沸石膜,并将其用于生物油的渗透汽化以进行高效脱水分离。ZSM-5沸石膜在强酸性、多组分的生物油体系中保持了很好的化学稳定性和优异的分离选择性,但在分离过程中面临着较强的膜污染问题,导致了膜通量的大幅下降。ZSM-5沸石膜的再生研究表明,膜的渗透通量随着再生温度的升高而逐渐提高。当再生温度为220℃时,ZSM-5沸石膜的渗透通量可以恢复至初始的88%。再生的机理研究表明,ZSM-5沸石膜中大量的晶内孔在生物油体系中极易被污染,从而导致渗透通量迅速下降;而相对较大的晶间孔却难以被完全堵塞,水分子在被污染的ZSM-5沸石膜中主要通过晶间孔进行渗透。上述结果表明,通过合理调控ZSM-5沸石膜的晶间孔的数量和尺寸大小可有效提升ZSM-5沸石膜在生物油中的渗透汽化脱水分离性能。

关键词: 沸石, 膜, 分离, 渗透汽化, 生物油

Abstract:

A ZSM-5 zeolite membrane was hydrothermally synthesized using a template-free method for bio-oil pervaporation dehydration. The ZSM-5 zeolite membrane showed both excellent chemical stability and selectivity in the highly acidic and multi-component bio-oil system. However, the membrane encountered serious membrane fouling in bio-oil during pervaporation, which resulted in a significant loss in the permeation flux. The membrane regeneration test showed that the permeation flux increased with increasing the regeneration temperature, and the value could be recovered to 88% of the original flux of the fresh ZMS-5 membrane after the membrane was regenerated at 220℃. The membrane regeneration mechanism showed that the intracrystalline pores of the ZSM-5 zeolite membrane were easily fouled in the bio-oil system, which was responsible to the rapid decrease of the permeation flux; while the intercrystalline pores with a relatively larger pore size were difficult to be completely blocked, thus the intercrystalline pores functioned as the main channels for water permeation through the fouled ZSM-5 zeolite membrane. The above results indicate that the pervaporation, dehydration and separation performance of ZSM-5 zeolite membrane in bio-oil can be effectively improved by properly adjusting the number and size of intercrystalline pores of ZSM-5 zeolite membrane.

Key words: zeolite, membranes, separation, pervaporation, bio-oil

中图分类号: 

  • TQ 028.8

图1

ZSM-5晶种 (a) 和沉积ZSM-5晶种层的载体 (b) 的SEM图片"

图2

载体(a)、ZSM-5晶种(b)、经生物油处理后ZSM-5晶种(c)、ZSM-5晶种层(d)和ZSM-5沸石膜(e)的XRD谱图"

图3

ZSM-5沸石膜的表面和截面的SEM图片"

表1

不同时间下ZSM-5沸石膜在30℃生物油中的渗透汽化脱水性能"

时间(h)渗透通量/(kg·m-2·h-1)渗透侧水含量/% (mass)
10.44597.7
60.09399
120.03895.9
180.03899.1
240.03798.2
300.03698.8
360.03799.1

图4

ZSM-5沸石膜再生前后在纯水体系中的渗透汽化性能的温度依存性"

图5

ZSM-5沸石膜再生前后在生物油体系中的渗透汽化性能的温度依存性"

图6

220℃再生的ZSM-5沸石膜在生物油体系中的渗透汽化性能的稳定性"

图7

ZSM-5沸石膜的水渗透率的Arrhenius关系图"

表2

ZSM-5沸石膜再生前后在纯水和生物油体系中水的渗透活化能和指前因子"

ZSM-5

沸石膜

纯水体系生物油体系
k0,/(mol·Pa-1·m-2·s-1)

EP,/

(kJ·mol-1)

k0,/(mol·Pa-1·m-2·s-1)

EP,/

(kJ·mol-1)

新膜1.14-5-6.821.11-8-17.99
R-1401.29-6-11.478.72-10-23.28
R-1801.45-6-11.471.65-9-22.77
R-2202.89-6-9.984.58-9-20.16
1 Bu Q, Chen K, Xie W, et al. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene[J]. Bioresource Technology, 2019, 291: 121860.
2 Chen X, Che Q, Li S, et al. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield[J]. Fuel Processing Technology, 2019, 196: 106180.
3 Shafaghat H, Kim J M, Lee I G, et al. Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts[J]. Renewable Energy, 2019, 144: 159-166.
4 Hassan E B, Abou-Yousef H, Steele P. Increasing the efficiency of fast pyrolysis process through sugar yield maximization and separation from aqueous fraction bio-oil[J]. Fuel Processing Technology, 2013, 110: 65-72.
5 Zhang L, Yu Z, Li J, et al. Steam reforming of typical small organics derived from bio-oil: correlation of their reaction behaviors with molecular structures[J]. Fuel, 2020, 259: 116214.
6 熊万明, 陈金珠, 吴东平, 等. 生物油中有机化合物的分析与表征[J]. 分析测试学报, 2013, 32(8): 1024-1030.
Xiong W M, Chen J Z, Wu D P, et al. Progresses on analysis and characterization of organic compounds in bio-oil[J]. Journal of Instrumental Analysis, 2013, 32(8): 1024-1030.
7 Aysu T, Durak H, Guner S, et al. Bio-oil production via catalytic pyrolysis of anchusa azurea: effects of operating conditions on product yields and chromatographic characterization[J]. Bioresource Technology, 2016, 205: 7-14.
8 Han Y L, Gholizadeh M, Tran C C, et al. Hydrotreatment of pyrolysis bio-oil: a review[J]. Fuel Processing Technology, 2019, 195: 106140.
9 王华, 刘荣厚, 张春梅, 等. 卡尔费休方法测定生物油含水量的试验研究[J]. 可再生能源, 2005, 3(121): 17-20.
Wang H, Liu R H, Zhang C M, et al. An experimental study on determination of the water content in bio-oil by Karl-Fischer titration[J]. Renewable Energy, 2005, 3(121): 17-20.
10 孙玉凤, 高虹, 王通洲. 玉米秸秆生物质热裂解产物分析[J]. 沈阳理工大学学报, 2010, 29(5): 72-76.
Sun Y F, Gao H, Wang T Z. Study on biomass pyrolysates of maize stalk [J]. Journal of Shenyang Ligong University, 2010, 29(5): 72-76.
11 徐莹, 王铁军, 马隆龙, 等. 真空热解松木粉制备生物油[J]. 农业工程学报, 2013, 29(1): 196-201.
Xu Y, Wang T J, Ma L L, et al. Technology of bio-oil preparation by vacuum pyrolysis of pine straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 196-201.
12 Wang S, Go Y, Liu Q, et al. Separation of bio-oil by molecular distillation[J]. Fuel Processing Technology, 2009, 90(5): 738-745.
13 Wang Y, Wang S, Leng F, et al. Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation[J]. Separation and Purification Technology, 2015, 152: 123-132.
14 Capunitan J A, Capareda S C. Characterization and separation of corn stover bio-oil by fractional distillation[J]. Fuel, 2013, 112:60-73.
15 Teella A, Huber G W, Ford D M. Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes[J]. Journal of Membrane Science, 2011, 378(1/2): 495-502.
16 Li G, Ma S, Yang H, et al. A graphene oxide membrane with self-regulated nanochannels for the exceptionally stable bio-oil dehydration[J]. AIChE Journal, 2020, 66(1): e16753.
17 Huang A, Lin Y S, Yang W. Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding[J]. Journal of Membrane Science, 2004, 245(1-2): 41-51.
18 Cao Y, Li Y, Wang M, et al. High-flux NaA zeolite pervaporation membranes dynamically synthesized on the alumina hollow fiber inner-surface in a continuous flow system[J]. Journal of Membrane Science, 2019, 570: 445-454.
19 Cui Y, Kita H, Okamoto K. Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability[J]. Journal of Membrane Science, 2004, 236(1): 17-27.
20 Zhou H, Li Y, Zhu G, et al. Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties[J]. Separation and Purification Technology, 2009, 65(2): 164-172.
21 Zhou R, Hu L, Zhang Y, et al. Synthesis of oriented zeolite T membranes from clear solutions and their pervaporation properties[J]. Microporous and Mesoporous Materials, 2013, 174: 81-89.
22 Wang X, Chen Y, Zhang C, et al. Preparation and characterization of high-flux T-type zeolite membranes supported on YSZ hollow fibers[J]. Journal of Membrane Science, 2014, 455: 294-304.
23 Lin X, Kita H, Okamoto K. Silicalite membrane preparation, characterization and separation performance[J]. Industrial & Engineering Chemistry Research. 2001, 40(19): 4069-4078.
24 Chen H, Li Y, Zhu G, et al. Synthesis and pervaporation performance of high-reproducibility silicalite-1 membranes[J]. Chinese Science Bulletin, 2008, 53(22): 3505-3510.
25 金鸽, 周志辉, 刘红, 等. 亲水性沸石膜在异丙醇脱水中的应用及其耐酸性研究[J]. 膜科学与技术, 2014, 34(6): 77-83.
Jin G, Zhou Z H, Liu H, et al. Application of hydrophilic zeolite membranes in isopropanol dehydration and acid resistance study[J]. Membrane Science and Technology, 2014, 34(6): 77-83.
26 李良清, 李佳佳, 张进建, 等. 渗透汽化异丙醇脱水ZSM-5沸石膜的制备与表征[J]. 现代化工, 2018, 38(9): 136-141.
Li L Q, Li J J, Zhang J J, et al. Preparation and characterization of ZSM-5 zeolite membrane for dehydration of isopropanol via pervaporation[J]. Modern Chemical Industry, 2018, 38(9): 136-141.
27 Li X, Kita H, Zhu H, et al. Synthesis of long-term acid-stable zeolite membranes and their potential application to esterification reactions[J]. Journal of Membrane Science, 2009, 339(1/2): 224-232.
28 Zhu M, Kumakiri I, Tanaka K, et al. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane[J]. Microporous and Mesoporous Materials, 2013, 181: 47-53.
29 Li G, Kikuchi E, Matsukata M. A study on the pervaporation of water-acetic acid mixtures through ZSM-5 zeolite membranes[J]. Journal of Membrane Science, 2003, 218(1/2): 185-194.
30 Li L, Yang J, Li J, et al. High performance ZSM-5 membranes on coarse macroporous α-Al2O3 supports for dehydration of alcohols[J]. AIChE Journal, 2016, 62(8): 2813-2824.
31 Zhu M, Lu Z, Kumakiri I, et al. Preparation and characterization of high water perm-selectivity ZSM-5 membrane without organic template[J]. Journal of Membrane Science, 2012, 415: 57-65.
32 Hedlund J, Noack M, Kolsch P, et al. ZSM-5 membranes synthesized without organic templates using a seeding technique[J]. Journal of Membrane Science, 1999, 159(1/2): 263-273.
33 Bettens B, Dekeyzer S, der Bruggen B V, et al. Transport of pure components in pervaporation through a microporous silica membrane [J]. The Journal of Physical Chemistry B, 2005, 109(11): 5216-5222.
34 Xiao J, Wei J. Diffusion mechanism of hydrocarbons in zeolites(Ⅰ): Theory[J]. Chemical Engineering Science, 1992, 47(5): 1123-1141.
[1] 武君媛, 霍伟智, 李志强, 曾嘉恒, 江燕斌. 电纺zein-SLS纤维膜的制备及其离子吸附性能研究[J]. 化工学报, 2020, 71(S1): 252-260.
[2] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[3] 滕达, 李铁林, 李昂, 安连锁, 沈国清, 张世平. 单通道陶瓷膜管低压透水性能实验分析[J]. 化工学报, 2020, 71(S1): 261-271.
[4] 陆俊杰, 张炜, 谢方民, 焦永峰. 一种自适应柱状密封气膜特性分析[J]. 化工学报, 2020, 71(S1): 346-354.
[5] 刘博文, 邓帅, 李双俊, 赵力, 杜振宇, 陈丽锦. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390.
[6] 孙艳, 刘士涛, 邓尚, 余丽芸, 吕东伟, 马军, 刘献斌. 负载羧基化球状介孔纳米颗粒TFN膜的研究[J]. 化工学报, 2020, 71(S1): 454-460.
[7] 李志强, 吕娜, 蒋兰英. 商业正渗透膜的改性及其用于处理焦化废水的研究[J]. 化工学报, 2020, 71(S1): 461-470.
[8] 吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020, 71(S1): 471-478.
[9] 王茹, 沈永超, 卫东, 郭倩. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257.
[10] 俞树荣, 丁俊华, 王世鹏, 刘红, 丁雪兴, 孙宝财. 柱面密封气膜动压效应模拟及试验[J]. 化工学报, 2020, 71(7): 3220-3228.
[11] 徐宇峰, 郭鸣, 王让, 肖伟, 刘元慧, 李思敏. 复合改性生物砂滤池对突发PhACs痕量污染的去除效果分析[J]. 化工学报, 2020, 71(7): 3322-3332.
[12] 王雅洁,李蕾,张倩,李倩,李望良. 磁响应分离膜研究进展[J]. 化工学报, 2020, 71(7): 2921-2932.
[13] 霍二福, 李迎春, 杨帅, 冯明, 程伟琴, 王柏楠, 魏新军. 环己醇精馏残液催化加氢分离二环己基醚工艺研究[J]. 化工学报, 2020, 71(7): 3132-3139.
[14] 刘学文, 李金京, 全晓军, 熊伟. 单个固体颗粒促进薄液膜破裂的格子Boltzmann研究[J]. 化工学报, 2020, 71(7): 3091-3097.
[15] 蔡媛媛,郭百涛,邢卫红,高从堦. 面向健康产业应用需求的膜技术与膜材料[J]. 化工学报, 2020, 71(7): 2933-2944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周力行. Advances in Studies on Turbulent Dispersed Multiphase Flows[J]. CIESC Journal, 2010, 18(6): 889 -898 .
[2] 汤立军, 唐炳涛, 张淑芬. Preparation and Dyeing Performance of a Novel Crosslinking Polymeric Dye Containing Flavone Moiety [J]. CIESC Journal, 2011, 19(4): 661 -665 .
[3] 夏新林,黄勇,谈和平. 微粒散射对半透明流体层光谱吸收特性的影响 [J]. CIESC Journal, 2001, 52(1): 17 -23 .
[4] 谭亚南;李枫;贾立山;伊晓东;王跃敏;方维平;万惠霖.

芳烃催化加氢交叉流反应器模型

[J]. CIESC Journal, 2008, 59(12): 3061 -3066 .
[5] 蔡卫权;李会泉;张懿.

H2O2沉淀铝酸钠溶液法制备大孔容纳米γ-Al2O3纤维粒子

[J]. CIESC Journal, 2004, 55(12): 1976 -1981 .
[6] 堵锡华.

多氯联苯热力学性质的构效关系

[J]. CIESC Journal, 2007, 58(10): 2432 -2436 .
[7] 王延儒,马沛生. 第二维里系数与温度的关联及Lennard-Jones和Stockmayer位能参数的推算 [J]. CIESC Journal, 1988, 39(5): 608 -623 .
[8] 籍凤秋, 曹传宝, 薛守洪, 王大鸷, 朱鹤孙. 硼碳氮纳米管的制备及其表征 [J]. 化工学报, 2005, 56(2): 363 -367 .
[9] 朱建业,房德中,彭秉璞. 合成氨变换工段饱和热水循环系统的优化方法研究 [J]. CIESC Journal, 1990, 41(4): 452 -460 .
[10] 尚玉明, 谢晓峰, 刘洋, 徐景明, 毛宗强. 一种新型磺化聚酰亚胺质子交换膜的合成与表征 [J]. 化工学报, 2005, 56(12): 2440 -2443 .