化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1562-1569.doi: 10.11949/0438-1157.20190980

• 流体力学与传递现象 • 上一篇    下一篇

螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究

涂爱民1,2,3,刘世杰1,2,3,莫逊1,2,3,朱冬生1,2,3,尹应德1,2,3   

  1. 1.中国科学院广州能源研究所,广东 广州 510640
    2.中国科学院可再生能源重点实验室,广东 广州510640
    3.广东省新能源和可再生能源重点实验室,广东 广州 510640
  • 收稿日期:2019-08-30 修回日期:2020-01-21 出版日期:2020-04-05 发布日期:2020-02-26
  • 通讯作者: 刘世杰
  • 作者简介:涂爱民(1971—),男,博士,高级工程师,tuam@ms. giec. ac. cn
  • 基金资助:
    中科院可再生能源重点实验室2019—2020年度基金项目;广州市科技计划项目产业技术重大攻关计划项目(201802010022)

Feasibility study of spiral twisted tube for gas turbine inlet temperature regulating heat exchanger

Aimin TU1,2,3,Shijie LIU1,2,3,Xun MO1,2,3,Dongsheng ZHU1,2,3,Yinde YIN1,2,3   

  1. 1.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong,China
    2.Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
    3.Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong, China
  • Received:2019-08-30 Revised:2020-01-21 Online:2020-04-05 Published:2020-02-26
  • Contact: Shijie LIU

摘要:

对将螺旋扭曲管用于燃机进气温度调节换热器进行可行性分析,模拟燃机进气加热器实际运行的工况条件进行综合传热性能实验研究,得到了传热与流阻准则关系式;引入综合评价因子概念并与传统钢铝翅片管换热器进行对比发现,螺旋扭曲管换热器是钢铝翅片管换热器的1.31~1.52倍。以某建设项目采用的E级PG9171E型机组为例,对采用螺旋扭曲管和钢铝翅片管的两种进气温度调节换热器进行对比发现:当采用螺旋扭曲管换热器时,在同样换热能力下,换热器风侧阻力增大了14.7%;在同等质量下,换热器换热能力提高9.9%左右。

关键词: 燃气轮机, 进气加热, 螺旋扭曲管, 双金属型翅片管, 传热, 腐蚀

Abstract:

The feasibility analysis of the use of spiral twisted tubes in gas turbine temperature control heat exchangers was carried out, and the simulation of the actual operating conditions of gas turbine intake heaters was carried out to conduct a comprehensive heat transfer performance experiment. The relationship between heat transfer and flow resistance criteria was obtained. By introducing the concept of comprehensive evaluation factor(η) and comparing the spiral twisted tube heat exchanger with the traditional steel aluminum finned tube heat exchanger, it is found that the value of η of the spiral twisted tube heat exchanger is 1.31—1.52 times of the steel aluminum finned tube heat exchanger. Taking the E-class PG9171E type unit used in a construction project as an example, comparing two kinds of intake air temperature regulating heat exchangers using a spiral twisted tube and a steel aluminum finned tube: when using a spiral twisted tube heat exchanger, under the same heat exchange capacity, the wind side resistance of the heat exchanger increased by 14.7%; under the same mass, the heat exchange capacity of the heat exchanger increased by about 9.9%.

Key words: gas turbine, intake heating, spiral twisted tube, bimetallic finned tube, heat transfer, corrosion

中图分类号: 

  • TK 172

图1

螺旋扭曲管结构示意图"

图2

一体化管排示意图"

图3

测试系统示意图1—风机;2—孔板;3—数字皮托管风速计;4—换热器;5—水流量计;6—水泵;7—水箱;8—电加热器;9—水温控制器;10—阀门; —温度计; —压差计"

表1

螺旋扭曲管换热器与钢铝翅片管换热器结构尺寸"

管型基管直径/mm元件外形特点/mm横向管间距/mm纵向管间距/mm单排管数/排数
螺旋扭曲管15.9×0.75×1270长轴/短轴:20.0/8.72025.020/8
钢铝翅片管? 25.0×2.00×1270片高/片距:16.0/2.56253.710/4

表2

测量仪器参数"

仪器量程精度
温度计-20~120℃±0.15℃
压差计0~500 Pa±1.0 Pa
皮托管风速计0~500 Pa±1.0 Pa
流量计2.0~40.0 m3/h±0.2 m3/h
Agilent 34970数据记录器

图4

不同管外空气流速下的总传热系数对比"

图5

管外侧传热系数随空气流速的变化"

图6

管外侧压降随空气流速的变化"

图7

管外侧综合性能评价因子随空气流速的变化"

表3

进气加热器设计介质参数(单模块)"

管内管外侧
介质介质热空气
流量/(t/h)42.9流量/(kg/s)63.0
密度/(kg/m3)987.100密度/(kg/m3)1.185
比热容/(J/(kg·℃))4175比热容/(J/(kg·℃))1005
热导率/(W/(m·K))0.650热导率/(W/(m·K))0.026
动力黏度/(Pa·s)5.34×10-4动力黏度/(Pa·s)1.84×10-5
进口温度/℃65进口温度/℃15
出口温度/℃39.5出口温度/℃35.0
换热量/W1268678换热量/W1266300

表4

两种换热器的设计计算参数对比(单模块)"

参数翅片管换热器螺旋扭曲管换热器
管程数21
管内流速/(m/s)0.530.26
管外流速/(m/s)5.758.63
总传热系数/(W/(㎡·K))26.6132.0
传热温差/℃23.924.4

换热面积/ m2

91.6(基管)+1999.0(翅片)

439.6

总换热能力/ W13270651415245
空气侧阻力/ Pa103126
管规格/mm×mm25.0×2.0015.9×0.75
单管长度/m10.010.0
单模块管根数118880
单模块总管长度/ m11808800
单模块外形尺寸/ mm×mm×mm

10600×2240×850

10600×2240×850

单模块换热管质量/ kg2352(含翅片)2494
单模块总净重/ kg~5880~5700
1 俞立凡, 冯宜. 9F燃机进气加热系统的经济性和安全性初探[J]. 电力建设, 2008, 29(9): 42-45.
Yu L F, Feng Y. Study on the economics and safety of 9F gas turbine inlet heating system[J]. Electric Power Construction, 2008, 29(9): 42-45.
2 卢伟明. GE 9FA 燃气轮机进气加热系统的控制[J]. 制冷空调与电力机械, 2008, 29(6): 91-94.
Lu W M. Control of GE 9FA gas turbine intake heating system[J]. Refrigeration Air Conditioning & Electric Power Machinery, 2008, 29(6): 91-94.
3 马琴, 李伟, 常娜娜, 等. LM2500 + G4 型燃气-蒸汽联合循环机组余热加热天然气的技术经济分析[J]. 华电技术, 2018, 40(7): 59-63.
Ma Q, Li W, Chang N N, et al. Technical and economic analysis of LM2500 + G4 gas-steam combined cycle unit with waste heat to heat natural gas [J]. Huadian Technology, 2018, 40(7): 59-63.
4 赵丽娟. 论 PG9351FA 燃气轮机的进气加热系统[J]. 燃气轮机技术, 2006, 19(4): 15-19.
Zhao L J. On the intake heating system of PG9351FA gas turbine [J]. Gas Turbine Technology. 2006, 19(4): 15-19.
5 张凡, 李兆辉, 李晓宇, 等. 不同材料翅片管换热器特性的试验研究[J]. 西安交通大学学报, 2015, 49(5): 62-67.
Zhang F, Li Z H, Li X Y, et al. Experimental study on performance of planar finned tube heat exchanger made of different materials[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 62-67.
6 张正国, 余昭胜, 方晓明, 等. 三维翅片管外螺旋流动传热强化[J]. 化工学报, 2006, 57(11): 2531-2535.
Zhang Z G, Yu Z S, Fang X M, et al. Heat transfer enhancement for helical flowing outside three-dimensional fin tube [J]. Journal of Chemical Industry and Engineering(China), 2006, 57(11): 2531-2535.
7 唐俊. 9FA燃机进气加热系统的作用和制造特点[J]. 水利水电施工, 2016, 157(4): 37-38+53.
Tang J. The function and manufacturing characteristics of 9FA gas turbine intake heating system[J]. Water Resources and Hydropower Engineering, 2016, 157(4): 37-38+53.
8 周晟. 9F燃机进气加热系统分析[J]. 光机电, 2016, 10(6): 100.
Zhou S. Analysis of 9F gas turbine intake heating system[J]. Opto-Electronics, 2016, 10(6): 100.
9 赵宇, 王勤韧, 陈江平, 等. 电化学腐蚀对翅片管换热器性能的影响[J]. 化工学报, 2010, 61(1): 22-26.
Zhao Y, Wang Q R, Chen J P, et al. Effect of electrochemical corrosion on performance of tube-fin heat exchanger [J]. CIESC Journal, 2010, 61(1): 22-26.
10 丁淇德. 进气加热器对燃气_蒸汽联合循环的影响[D]. 北京: 华北电力大学, 2015.
Ding Q D. Effect of intake heater on gas-steam combined cycle[D]. Beijing: North China Electric Power University, 2015.
11 Al-Hadhrami L M, Ahmad A, Al-Qahtani A. Performance analysis of heat exchangers of an existing naphtha hydrotreating plant: a case study[J]. Applied Thermal Engineering, 2010, 30(8/9): 1029-1033.
12 Al-Hadhrami L M, Al-Qahtani A. Experimental study of fouling resistance in twisted tube heat exchanger[J]. Heat Transfer Engineering, 2012, 33(12): 1024-1032.
13 Thawkar V P, Farkade H S. Experimental and CFD analysis of twisted tube heat exchanger under forced convection[J]. International Journal of Science and Research, 2013, 4(5): 137-142.
14 Sheng Y, Li Z, Hong X. Experimental study on convective heat transfer and flow resistance characteristics of water flow in twisted elliptical tubes [J]. Applied Thermal Engineering, 2011, 31: 2981-2991.
15 谭祥辉, 孙赫, 张立振, 等. 扭曲椭圆管换热的壳程强化传热特性[J]. 化工学报, 2012, 63(3): 713-730.
Tan X H, Sun H, Zhang L Z, et al. Shell-side enhanced heat transfer characteristics of heat exchangers with twisted elliptical tubes[J]. CIESC Journal, 2012, 63(3): 713-730.
16 刘世杰, 朱冬生, 张洁娜, 等. 三维变形管 MVR 蒸发器的强化传热数值研究[J]. 高校化学工程学报, 2018, 32(6): 1307-1313.
Liu S J, Zhu D S, Zhang J N, et al. Numerical study on heat transfer enhancement of MVR evaporator with 3D-deformation tube[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6): 1307-1313.
17 朱冬生, 李修真, 孙晋飞, 等. 三维变形管与三维内肋管在管式空气预热器上的应用研究[J]. 热能动力工程, 2018, 33(4): 139-144
Zhu D S, Li X Z, Sun J F, et al. Study of the application of three-dimensional deformed tubes and three-dimensional internally ribbed tubes in tubular air preheaters[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(4): 139-144.
18 莫逊, 朱冬生, 林城迪. 三维管烟气换热器传热特性的实验及模拟研究[J]. 过程工程学报, 2018, 18(1): 41-48.
Mo X, Zhu D S, Lin C D. Experimental and simulation study on heat transfer characteristics of three-dimensional tube flue gas heat exchanger[J]. Chinese Journal of Process Engineering, 2018, 18(1): 41-48.
19 Cheng J L, Qian Z Q, Wang Q. Analysis of heat transfer and flow resistance of twisted oval tube in low Reynolds number flow [J]. International Journal of Heat and Mass Transfer, 2017, 109: 761-777.
20 朱冬生, 安冬旭, 李霞, 等. 高效复合强化换热器的管程性能[J]. 化工学报, 2014, 65(2): 453-459.
Zhu D S, An D X, Li X, et al. Tube side performance of new efficient composite enhanced heat exchanger[J]. CIESC Journal, 2014, 65(2): 453-459.
21 刘庆亮, 朱冬生, 杨蕾. 螺旋扭曲扁管换热器的研究进展与工业应用[J]. 流体机械, 2010, 38(3): 37-42.
Liu Q L, Zhu D S, Yang L. Research progress and industrial application of spiral twisted flat tube heat exchanger[J]. Fluid Machinery, 2010, 38(3): 37-42.
22 杨旭. 扭曲管换热器的传热强化及其机械性能研究 [D]. 北京: 北京化工大学, 2014.
Yang X. Heat transfer enhancement and mechanical properties of twisted tube heat exchangers [D]. Beijing: Beijing University of Chemical Technology, 2014.
23 Li X Z, Zhu D S, Yin Y D, et al. Experimental study on heat transfer and pressure drop of twisted oval tube bundle in cross flow [J]. Experimental Thermal and Fluid Science, 2018, 99: 251-258.
24 Li X Z, Zhu D S, Yin Y D, et al. Parametric study on heat transfer and pressure drop of twisted oval tube bundle with in line layout [J]. International Journal of Heat and Mass Transfer, 2019, 135: 860-872.
25 Li X Z, Zhu D S, Yin Y D, et al. Heat transfer and pressure drop for twisted oval tube bundles with staggered layout in crossflow of air [J]. Applied Thermal Engineering, 2019, 148: 1092-1098.
26 Gu H F, Chen Q, Wang H J, et al. A study of shell side condensation of a hydrocarbon in the presence of no condensable gas on twisted elliptical tubes[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(4): 7.
27 Tan X H, Zhu D S, Zhou G Y, et al. Experimental and numerical study of convective heat transfer and fluid flow in twisted oval tubes[J]. International Journal of Heat and Mass Transfer, 2012, 55(17/18): 4701-4710.
28 上海江湾化工机械厂, 上海机械学院. 双金属轧片式翅片管换热器[J]. 石油化工设备技术, 1989, 10(3): 37-40.
Shanghai Jiangwan Chemical Machinery Factory, Shanghai Mechanical College. Double-metal rolled finned tube heat exchanger[J]. Petro-chemical Equipment Technology, 1989, 10(3): 37-40.
29 张贤安. 双金属轧片式翅片管管外对流换热准则关系式研究[J]. 流体机械, 2004, 32(7): 19-22.
Zhang X A. Research on convective heat transfer empirical formula for the outside of double metal rolling fin tubes[J]. Fluid Machinery, 2004, 32(7): 19-22.
30 孙茜, 欧阳新萍. 椭圆钎焊与双金属轧制翅片管传热与阻力性能的试验对比[J]. 热能动力工程, 2017, 32(8): 5-10.
Sun X, Ouyang X P. Experimental comparison on the heat transfer performance and resistance characteristics of elliptical soldered fined tube and bimetal rolled finned tube[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(8): 5-10.
[1] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[2] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[3] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[4] 周年勇, 徐慕豪, 冯浩, 段锋, 王庆荣, 陈海飞, 郭强. 闭式喷雾冷却的瞬态传热过程研究[J]. 化工学报, 2020, 71(3): 1018-1025.
[5] 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008.
[6] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[7] 李保红, 李继文. 采用换热器负荷图指导换热网络改造的新方法[J]. 化工学报, 2020, 71(3): 1288-1296.
[8] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[9] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[10] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[11] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[12] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[13] 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145.
[14] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[15] 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .