化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1597-1608.doi: 10.11949/0438-1157.20190853

• 流体力学与传递现象 • 上一篇    下一篇

微通道内单柱绕流特性的Micro-PIV实验研究

李济超1,2(),季璨1,吕明明1,王静1,2,刘志刚1(),李慧君2   

  1. 1.齐鲁工业大学(山东省科学院),山东省科学院能源研究所,山东 济南 250014
    2.华北电力大学能源动力与机械工程学院,河北 保定 071003
  • 收稿日期:2019-07-25 修回日期:2020-01-07 出版日期:2020-04-05 发布日期:2020-02-26
  • 通讯作者: 刘志刚 E-mail:1357862777@qq.com;zgliu9322@163.com
  • 作者简介:李济超(1994—),男,硕士研究生, 1357862777@qq.com
  • 基金资助:
    山东省自然科学基金项目(ZR2016YL005);山东省重点研发计划项目(2017GGX40125);山东省科学院青年基金项目(2018QN0017)

Experimental study on characteristics of flow around single cylinder in microchannel based on Micro-PIV

Jichao LI1,2(),Can JI1,Mingming LYU1,Jing WANG1,2,Zhigang LIU1(),Huijun LI2   

  1. 1.Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China
    2.School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, Hebei, China
  • Received:2019-07-25 Revised:2020-01-07 Online:2020-04-05 Published:2020-02-26
  • Contact: Zhigang LIU E-mail:1357862777@qq.com;zgliu9322@163.com

摘要:

采用微观粒子成像系统(Micro-PIV)实验研究了6<Re<300范围内微通道内D=0.4mm圆柱的绕流特性,获得并分析了不同Re下不同高度流层的速度场、涡量场、湍流强度场及回流区漩涡结构。研究结果表明,微圆柱绕流出现漩涡的第一临界Re在10左右,随着Re的增大,尾流区涡长度和宽度增加,尾流区域增大,漩涡中心后移;由于黏性阻滞,越靠近微通道壁面,主流速度越低且分布越均匀;不同高度下回流区长度相同,远离壁面的平面尾流区漩涡中心沿流动方向后移;高涡量区与高湍流强度区分布在微圆柱两侧,说明该位置流体混合较为剧烈,随着Re的增大,涡量增加,高涡量区变窄、变长,湍流强度及高湍流强度区域增大,当Re>200,不同高度流层的湍流强度差别较小。

关键词: 微圆柱绕流, Micro-PIV, 尾流区, 涡量, 湍流强度

Abstract:

The micro-particle imaging velocimetry(Micro-PIV) system was used to investigate the characteristics of the flow around a microcylinder with D=0.4 mm in the microchannel in the range of 6<Re<300. The velocity field, vorticity field, turbulence intensity field and the vortex structures in flow layers with different heights under different Reynolds numbers were obtained and analyzed. The research results show that the first critical Re of the vortex around the micro-cylinder is around 10, and with the increase of Re, the length and width of the vortex in the wake region increase, the wake region increases, and the center of the vortex moves backward. As the increase of Reynolds number, the length and width of the vortices increased, and the center of the vortices moved downstream. The wake regions in flow layers with different heights had the same length, but the vortex center of the wake region moved downstream for flow in a layer away from the wall. The high vorticity area and the high turbulence intensity area were distributed on both sides of the microcylinder, indicating that the fluid mixing at this position was more severe. With the increase of Re, the vorticity increased, and the high vorticity area became narrower and longer, as well as the turbulence intensity. Besides, the high turbulence intensity area expanded with increase of Re. and the turbulence intensity difference among different flow layers was small at Re>200.

Key words: flow around microcylinder, Micro-PIV, wake region, vorticity, turbulence intensity

中图分类号: 

  • TK 124

图1

实验系统示意图"

图2

实验段剖面"

图3

微通道与微柱示意图"

图4

示踪粒子灰度图像"

表1

实验参数的误差"

ParameterUncertainty
Uavg±2.09%
Re±2.15%
Wz±4.00%
Lvc±4.47%
L*±4.47%
TI±4.00%
U±6.02%
V±6.02%

图5

不同Re下圆柱绕流无量纲时均速度U分布"

图6

圆柱绕流示意图"

图7

不同Re下漩涡无量纲长度"

图8

不同Re下漩涡中心位置"

图9

不同Re下尾流区无量纲时均速度U分布"

图10

不同Re下圆柱绕流无量纲时均涡量Wz分布"

图11

不同Re下圆柱绕流无量纲湍流强度TI分布"

1 Tullius J F, Tullius T K, Bayazitoglu Y. Optimization of short micro pin fins in minichannels[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 3921-3932.
2 Liu Z G, Wang Z L, Zhang C W, et al. Flow resistance and heat transfer characteristics in micro-cylinders-group[J]. Heat and Mass Transfer, 2013, 49(5): 733-744.
3 Shafeie H, Abouali O, Jafarpur K, et al. Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures[J]. Applied Thermal Engineering, 2013, 58(1/2): 68-76.
4 祝叶, 管宁, 李栋, 等. 不同截面形状超疏水微肋阵内对流换热特性[J]. 化工学报, 2017, 68(1): 74-82.
Zhu Y, Guan N, Li D, et al. Convection heat transfer characteristics of super-hydrophobic micro pin-fins with different cross-sectional shapes[J]. CIESC Journal, 2017, 68(1): 74-82.
5 杜保周, 孔令健, 郭保仓, 等. 微肋阵通道内流动沸腾CHF特性[J]. 化工学报, 2018, 69(5): 1989-1998.
Du B Z, Kong L J, Guo B C, et al. Critical heat flux characteristics during flow boiling in a micro channel with micro pin fins[J]. CIESC Journal, 2018, 69(5): 1989-1998.
6 过增元. 国际传热研究前沿——微细尺度传热[J]. 力学进展, 2000, 30(1): 1-6.
Guo Z Y. Frontier of heat transfer—microscale heat transfer[J]. Advances in Mechanics, 2000, 30(1): 1-6.
7 Wang Y, Peles Y. An experimental study of passive and active heat transfer enhancement in microchannels[J]. Journal of Heat Transfer, 2014, 136(3): 031901.
8 Wang Y, Shin J H, Woodcock C, et al. Experimental and numerical study about local heat transfer in a microchannel with a pin fin[J]. International Journal of Heat and Mass Transfer, 2018, 121:534-546.
9 Peles Y, Kosar A, Mishra C, et al. Forced convective heat transfer across a pin fin micro heat sink[J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3615-3627.
10 Zdravkovich M M. Different modes of vortex shedding: an overview[J]. Journal of Fluids and Structures, 1996, 10(5): 427-437.
11 Yang X, Zebib A. Absolute and convective instability of a cylinder wake[J]. Physics of Fluids, 1989, 1(4): 689-696.
12 Henderson R D. Details of the drag curve near the onset of vortex shedding[J]. Physics of Fluids, 1995, 7(9): 2102-2104.
13 Panton R L. Incompressible flow[J]. Physics Today, 1996, 49(11):89-90.
14 Fornberg B. A numerical study of steady viscous flow past a circular cylinder[J]. Journal of Fluid Mechanics, 1980, 98(4): 819-855.
15 Green R B, Gerrard J H. Vorticity measurements in the near wake of a circular cylinder at low Reynolds numbers[J]. Journal of Fluid Mechanics, 1993, 246(1): 675-691.
16 Norberg C. An experimental investigation of the flow around a circular cylinder: influence of aspect ratio[J]. Journal of Fluid Mechanics, 1994, 258(1): 287-316.
17 Williamson C H K. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low reynolds numbers[J]. Journal of Fluid Mechanics, 1989, 206(1): 579-627.
18 Law C W, Ko N W M. Bistable flow in lower transition regime of circular cylinder[J]. Fluid Dynamics Research, 2009, 29(6): 313-344.
19 Zovatto L, Pedrizzetti G. Flow about a circular cylinder between parallel walls[J]. Journal of Fluid Mechanics, 2001, 440(440): 1-25.
20 乔永亮. 有限长圆柱绕流的流动特性及其机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
Qiao Y L. Study on the flow characteristics and mechanism of flow around a finite-length circular cylinder[D]. Harbin: Harbin Institute of Technology, 2016.
21 Armellini A, Casarsa L, Giannattasio P. Separated flow structures around a cylindrical obstacle in a narrow channel[J]. Experimental Thermal and Fluid Science, 2009, 33(4): 604-619.
22 Armellini A, Casarsa L, Giannattasio P. Low Reynolds number flow in rectangular cooling channels provided with low aspect ratio pin fins[J]. International Journal of Heat and Fluid Flow, 2010, 31(4): 689-701.
23 刘中春, 侯吉瑞, 岳湘安. 微尺度流动界面现象及其流动边界条件分析[J]. 水动力学研究与进展, 2006, 21(3): 339-346.
Liu Z C, Hou J R, Yue X A. Interfacial phenomenon in micro scale flowing and its flowing boundary condition[J]. Journal of Hydrodynamics, 2006, 21(3): 339-346.
24 孙江龙, 吕续舰, 郭磊, 等. 微尺度流动研究的简要综述[J]. 机械强度, 2010, 32(3): 502-508.
Sun J L, Lyu X J, Guo L, et al. Brief summarization of micro-scale flow research[J]. Journal of Mechanical Strength, 2010, 32(3): 502-508.
25 Meis M, Varas F, Velázquez A, et al. Heat transfer enhancement in micro-channels caused by vortex promoters[J]. International Journal of Heat and Mass Transfer, 2010, 53(1): 29-40.
26 Jung J, Kuo C J, Peles Y, et al. The flow field around a micropillar confined in a microchannel[J]. International Journal of Heat and Fluid Flow, 2012, 36: 118-132.
27 Xia G, Zhuo C, Cheng L, et al. Micro-PIV visualization and numerical simulation of flow and heat transfer in three micro pin-fin heat sinks[J]. International Journal of Thermal Sciences, 2017, 119: 9-23.
[1] 魏晓阳, 王利民, 邓磊, 车得福. CC板通道入口效应对传热特性和阻力特性的影响[J]. 化工学报, 2017, 68(11): 4061-4068.
[2] 蔡香丽, 李培, 杨智勇, 黄蕾, 魏耀东. 圆管内轴向旋转流切向速度湍流强度[J]. 化工学报, 2014, 65(11): 4278-4284.
[3] 龚斌, 包忠平, 张春梅, 吴剑华. 混合元件数对SK型静态混合器流场特性的影响 [J]. 化工学报, 2009, 60(8): 1974-1980.
[4] 徐百平;瞿金平;刘跃军;宋建;冯彦洪;谢芳.

单螺杆挤出机中三维流动有限体积数值模拟

[J]. CIESC Journal, 2008, 59(12): 3055-3060.
[5] 孙东亮;王良璧.

含扭曲带管内流动与传热的数值模拟

[J]. CIESC Journal, 2004, 55(9): 1422-1427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Tahir Imran QURESHI, Hong-Tae KIM, Young-Ju KIM. 用UV/H2O2,UV/O3,UV/H2O2/O3催化处理城市固体垃圾填埋渗出物[J]. CIESC Journal, 2002, 10(4): 444 -449 .
[2] 左景伊, 刘幼平, 许淳淳, 金志强 . INVESTIGATION ON ELECTROCHEMISTRY INSIDE STRESS CORROSION CRACKS OR PITS[J]. CIESC Journal, 1995, 3(4): 215 -222 .
[3] 刘心洪, 包雨云, 李志鹏, 高正明, John M. Smith. Particle Image Velocimetry Study of Turbulence Characteristics in a Vessel Agitated by a Dual Rushton Impeller[J]. CIESC Journal, 2008, 16(5): 700 -708 .
[4] 刘心洪, 包雨云, 李志鹏, 高正明. Analysis of Turbulence Structure in the Stirred Tank with a Deep Hollow Blade Disc Turbine by Time-resolved PIV[J]. CIESC Journal, 2010, 18(4): 588 -599 .
[5] 张政,谢灼利. 流体-固体两相流的数值模拟 [J]. CIESC Journal, 2001, 52(1): 1 -12 .
[6] 林纪方,楊友麒,孔繁果. 液体金属的沸腾给热 [J]. CIESC Journal, 1959, 10(2): 147 -152 .
[7] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[8] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[9] 陈光文, 袁权. 微化工技术 [J]. 化工学报, 2003, 54(4): 427 -439 .
[10] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .