化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1540-1553.doi: 10.11949/0438-1157.20191503

• 流体力学与传递现象 • 上一篇    下一篇

局部几何构型对聚焦流微通道内液滴生成特性的影响

宋祺(),杨智(),陈颖,罗向龙,陈健勇,梁颖宗   

  1. 广东工业大学材料与能源学院,广东 广州 510006
  • 收稿日期:2019-12-12 修回日期:2020-02-12 出版日期:2020-04-05 发布日期:2020-02-18
  • 通讯作者: 杨智 E-mail:songq2019@foxmail.com;yangzhi@gdut.edu.cn
  • 作者简介:宋祺(1995—),男,硕士研究生,songq2019@foxmail.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(51706048)

Effect of local geometry on droplet formation in flow-focusing microchannel

Qi SONG(),Zhi YANG(),Ying CHEN,Xianglong LUO,Jianyong CHEN,Yingzong LIANG   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2019-12-12 Revised:2020-02-12 Online:2020-04-05 Published:2020-02-18
  • Contact: Zhi YANG E-mail:songq2019@foxmail.com;yangzhi@gdut.edu.cn

摘要:

在微流控技术中,微通道结构的优化设计是一种被动实现液滴精确调控的有效方法。为探究分散相入口、通道下游孔口以及二者共存模式下的通道结构变化对液滴生成特性的影响,采用VOF / CSF耦合level set的界面捕捉法对聚焦流微通道内的液滴生成开展了数值模拟研究。结果表明,当孔口为单一变量时,液滴生成周期和直径随孔口宽度呈近线性增大,且颈部宽度收缩率随孔口宽度的增大而不断减小。孔口的收缩有助于强化连续相Y方向的挤压和X方向的黏性剪切作用。当孔口宽度较小,聚焦作用较强时,液滴生成周期和直径整体上对分散相入口竖直和水平边锥形角的变化并不敏感;此时,孔口对连续相的聚焦效应主要影响液滴的生成特性。当孔口和分散相入口水平边锥形角θ2同步变化时,二者可协同影响液滴的生成。孔口宽度的增大削弱了孔口的聚焦作用,液滴挤压破裂时间在单个周期中的占比逐渐增大。此外,当孔口宽度较大时,液滴生成开始对θ2敏感,其周期和直径随θ2增大而增大,且液滴可从滴流向射流模式转变。

关键词: 聚焦流, 数值模拟, 锥形入口, 孔口, 协同效应

Abstract:

In microfluidic technology, the optimal design of the microchannel structure is an effective method to passively achieve precise control of droplets. To investigate the influence of the local geometries including the dispersed phase inlet, the downstream orifice and their coexistence mode on the droplet formation, this paper adopts the interface capture method coupling the VOF/CSF and level set method to numerically simulate the droplet formation in flow-focusing devices. The results show that when the orifice as a single variable, the droplet generation cycle and diameter increase linearly with the orifice width. The shrinkage rate of the neck width decreases with the increasing orifice width. The narrowing neck is helpful to strengthen the Y-direction squeezing and the X-direction shear stress. When the orifice width is relatively small, the generation cycle and diameter are not sensitive to the included angle of the vertical edge and the horizontal edge on the whole. In this case, the droplet generation is mainly affected by the orifice s focusing effect. When the orifice and the included angle θ2 vary simultaneously, they two can cooperatively affect the droplet formation. The increasing orifice width gradually weakens the orifice s focusing effect, and thus leads to an increase of the proportion of the extrusion-rupture time in a single formation cycle. In addition, when the orifice width is relatively large, the droplet generation period and diameter increase with the increase of θ2, and the droplet flow pattern can transform from a dripping regime to a jetting regime, indicating that the included angle θ2 at the horizontal edge begins to significantly affect the droplet generation.

Key words: flow-focusing, numerical simulation, tapered inlet, orifice, synergistic effect

中图分类号: 

  • O 359

图1

十字聚焦微通道二维几何结构(下角标c和d分别表示连续相和分散相)"

图2

数值模拟过程中网格无关性验证"

图3

不同网格所对应的液滴生成周期"

图4

实验通道结构"

图5

液滴生成的模拟与实验结果对比"

图6

不同孔口宽度下液滴断裂时刻的两相云图"

图7

液滴生成周期tcycle和直径Ddroplet随孔口宽度的变化"

图8

各监测点速度随孔口宽度的变化"

图9

单个生成周期内监测点速度、液柱轮廓、速度场和压力场随时间的变化"

图10

挤压阶段内颈部宽度和位置随时间的变化"

图11

不同竖直边锥形角下液滴断裂时刻两相云图"

图12

液滴生成周期tcycle和直径Ddroplet随竖直边锥形角的变化"

图13

两相交汇区内c点vc,x速度随竖直边锥形角的变化"

图14

液滴断裂时刻锥形入口的局部速度场分布图"

图15

不同水平边锥形角下液滴断裂时刻两相云图"

图16

液滴生成周期tcycle和直径Ddroplet随水平边锥形角的变化"

图17

不同水平边锥形角和孔口宽度下液滴断裂时刻两相云图"

图18

液滴生成周期tcycle随水平边锥形角和孔口宽度的变化规律"

图19

单个生成周期内监视点a处不同水平边锥形角下va,x速度随时间的变化"

表1

不同通道构型下液滴生长与挤压破裂阶段所经历时间的对比"

wori/μmθ2/ (°)t1 /mst2/mst3 /ms(t2-t1)/ms(t3-t2)/ms(t3-t2)/t3
50001.241.6931.240.45326.757%
2001.1951.6211.1950.42626.280%
4001.2921.7171.2920.42524.753%
75001.8152.6861.8150.87132.427%
2001.682.4591.680.77931.679%
4002.0362.4252.0360.38916.041%
100002.123.8652.121.74545.148%
2001.8923.6061.8921.71447.532%
40
1 林炳承, 秦建华. 图解微流控芯片实验室[M].北京: 科学出版社, 2008: 473.
Lin B C, Qin J H. Graphic Laboratory on a Microfluidic Chip [M]. Beijing: Science Press, 2008: 473.
2 Chan E M, Alivisatos A P, Mathies R A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets[J]. Journal of the American Chemical Society, 2005, 127(40): 13854-13861.
3 Liu K, Ding H J, Liu J, et al. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device[J]. Langmuir, 2006, 22(22): 9453-9457.
4 Chen H, Zhang F, Fu S, et al. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J]. Advanced Materials, 2006, 18(23): 3089-3093.
5 Xu Q, Hashimoto M, Dang T T, et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery[J]. Small, 2009, 5(13): 1575-1581.
6 Frenz L, El Harrak A, Pauly M, et al. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles[J]. Angew Chem. Int. Ed. Engl., 2008, 47(36): 6817-6820.
7 Hung L H, Choi K M, Tseng W Y, et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis[J]. Lab Chip, 2006, 6(2): 174-178.
8 Hoájeong E, Chunákim K, Sangágo J. Microfluidics assisted synthesis of well-defined spherical polymeric microcapsules and their utilization as potential encapsulants[J]. Lab on a Chip, 2006, 6(6): 752-756.
9 Bardin D, Martz T D, Sheeran P S, et al. High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy[J]. Lab on a Chip, 2011, 11(23): 3990-3998.
10 Chen H, Chang X, Weng T, et al. A study of microemulsion systems for transdermal delivery of triptolide[J]. Journal of Controlled Release, 2004, 98(3): 427-436.
11 Dames P, Gleich B, Flemmer A, et al. Targeted delivery of magnetic aerosol droplets to the lung[J]. Nature Nanotechnology, 2007, 2(8): 495.
12 Ganan-Calvo A M, Montanero J M, Martin-Banderas L, et al. Building functional materials for health care and pharmacy from microfluidic principles and flow focusing[J]. Adv. Drug Deliv. Rev., 2013, 65(11/12): 1447-1469.
13 Hung L H, Teh S Y, Jester J, et al. PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches[J]. Lab on a Chip, 2010, 10(14): 1820-1825.
14 Huebner A, Bratton D, Whyte G, et al. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays[J]. Lab Chip, 2009, 9(5): 692-698.
15 Hufnagel H, Huebner A, Gulch C, et al. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets[J]. Lab Chip, 2009, 9(11): 1576-1582.
16 Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Phys. Rev. Lett., 2001, 86(18): 4163-4166.
17 魏丽娟, 朱春英, 付涛涛, 等. T型微通道内液滴尺寸的实验测定与关联[J]. 化工学报, 2013, 64(2): 517-523.
Wei L J, Zhu C Y, Fu T T, et al. Experimental measurement and correlation of droplet size in T-junction microchannels[J]. CIESC Journal, 2013, 64(2): 517-523.
18 马朋成, 朱春英, 付涛涛, 等. 不对称T型微通道内液滴的无阻塞破裂动力学[J]. 化工学报, 2018, 69(11): 4633-4639.
Ma P C, Zhu C Y, Fu T T, et al. Dynamics of droplet breakup with permanent tunnel in asymmetric microfluidic T-junction[J]. CIESC Journal, 2018, 69(11): 4633-4639.
19 Zheng B, Tice J D, Roach L S, et al. A droplet‐based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction[J]. Angewandte Chemie International Edition, 2004, 43(19): 2508-2511.
20 刘赵淼, 刘丽昆, 申峰. Y 型微通道两相流内部流动特性[J]. 力学学报, 2014, 46(2): 209-216.
Liu Z M, Liu L K, Shen F. Two-phase flowcharacteristics in Y-junction microchannel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 209-216.
21 刘赵淼, 刘丽昆, 申峰. Y 型微通道中两相界面特性变化分析[J]. 机械工程学报, 2014, 50(8): 189-196.
Liu Z M, Liu L K, Shen F. Numerical analysis on two-phase flow characteristics at convection microfluidic Y-junctions[J]. Journal of Mechanical Engineering, 2014, 50(8): 189-196.
22 马蕊, 付涛涛, 张沁丹, 等. Y聚焦型微通道内磁流体液滴的生成与调控[J]. 化工学报, 2018, 69(2): 602-610.
Ma R, Fu T T, Zhang Q D, et al. Formation and manipulation of ferrofluid droplets in Y-shaped flow-focusing microchannel[J]. CIESC Journal, 2018, 69(2): 602-610.
23 Dang T D, Kim Y H, Kim H G, et al. Preparation of monodisperse PEG hydrogel microparticles using a microfluidic flow-focusing device[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(4): 1308-1313.
24 王维萌, 马一萍, 陈斌. 十字交叉微通道内微液滴生成过程的数值模拟[J]. 化工学报, 2015, 66(5): 1633-1641.
Wang W M, Ma Y P, Chen B. Numerical simulation of droplet generation in crossing micro-channel[J]. CIESC Journal, 2015, 66(5): 1633-1641.
25 张沁丹, 付涛涛, 朱春英, 等. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2): 504-511.
Zhang Q D, Fu T T, Zhu C Y, et al. Formation and size prediction of slug droplet in viscoelastic fluid in flow-focusing microchannel[J]. CIESC Journal, 2016, 67(2): 504-511.
26 张翀, 付涛涛, 姜韶堃, 等. 聚焦十字型微通道内高黏流体中气泡生成动力学[J]. 化工学报, 2018, 69(2): 650-654.
Zhang C, Fu T T, Jiang S K, et al. Bubble forming dynamics of highly viscous fluids in microfluidic flow-focusing cross channel device[J]. CIESC Journal, 2018, 69(2): 650-654.
27 Umbanhowar P B, Prasad V, Weitz D A. Monodisperse emulsion generation via drop break off in a coflowing stream[J]. Langmuir, 2000, 16(2): 347-351.
28 兰文杰, 李少伟, 徐建鸿, 等. 同轴环管微流控设备内液-液两相黏性流体的流动规律[J]. 化工学报, 2013, 64(2): 476-483.
Lan W J, Li S W, Xu J H, et al. Liquid- liquid two-phase viscous flow in coaxial microfluidic device[J]. CIESC Journal, 2013, 64(2): 476-483.
29 Peng L, Yang M, Guo S S, et al. The effect of interfacial tension on droplet formation in flow-focusing microfluidic device[J]. Biomed Microdevices, 2011, 13(3): 559-564.
30 Wu L Y, Liu X D, Zhao Y J, et al. Role of local geometry on droplet formation in axisymmetric microfluidics[J]. Chemical Engineering Science, 2017, 163: 56-67.
31 Liu H, Zhang Y. Droplet formation in microfluidic cross-junctions[J]. Physics of Fluids, 2011, 23(8): 082101.
32 Tan Y C, Cristini V, Lee A P. Monodispersed microfluidic droplet generation by shear focusing microfluidic device[J]. Sensors and Actuators B: Chemical, 2006, 114(1): 350-356.
33 Lashkaripour A, Abouei M A, Rasouli M, et al. Numerical study of droplet generation process in a microfluidic flow focusing[J]. Journal of Computational Applied Mechanics, 2015, 46(2): 167-175.
34 Gupta A, Matharoo H S, Makkar D, et al. Droplet formation via squeezing mechanism in a microfluidic flow-focusing device[J]. Computers & Fluids, 2014, 100: 218-226.
35 Xiong Q Q, Chen Z, Li S W, et al. Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel[J]. Chemical Engineering Science, 2018, 185: 157-167.
36 Mak S Y, Chao Y, Shum H C. The dripping-to-jetting transition in a co-axial flow of aqueous two-phase systems with low interfacial tension[J]. RSC Advances, 2017, 7(6): 3287-3292.
37 Chen Y, Wu L, Zhang L. Dynamic behaviors of double emulsion formation in a flow-focusing device[J]. International Journal of Heat and Mass Transfer, 2015, 82: 42-50.
38 Li Y, Wu P, Zhang H, et al. The instability of monodisperse bubbles passing through a confined geometry[J]. Applied Physics Letters, 2014, 105(20): 201605.
39 Zinchenko A Z, Rother M A, Davis R H. Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm[J]. Journal of Fluid Mechanics, 1999, 391: 249-292.
40 Cristini V, Bławzdziewicz J, Loewenberg M. Drop breakup in three-dimensional viscous flows[J]. Physics of Fluids, 1998, 10(8): 1781-1783.
41 Castrejón-Pita J, Morrison N, Harlen O, et al. Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode[J]. Physical Review E, 2011, 83(3): 036306.
42 Shin S, Juric D. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[J]. Journal of Computational Physics, 2002, 180(2): 427-470.
43 Yabe T, Xiao F, Utsumi T. The constrained interpolation profile method for multiphase analysis[J]. Journal of Computational Physics, 2001, 169(2): 556-593.
44 Osher S, Fedkiw R P. Level set methods: an overview and some recent results[J]. Journal of Computational Physics, 2001, 169(2): 463-502.
45 Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
46 Cristini V, Tan Y C. Theory and numerical simulation of droplet dynamics in complex flows—a review[J]. Lab on a Chip, 2004, 4(4): 257-264.
47 Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
48 Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and interfacial flow[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 567-603.
49 Renardy Y, Renardy M. Prost: a parabolic reconstruction of surface tension for the volume-of-fluid method[J]. Journal of Computational Physics, 2002, 183(2): 400-421.
50 Sethian J A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science [M]. Cambridge: Cambridge University Press, 1999.
51 Osher S, Fedkiw R, Piechor K. Level set methods and dynamic implicit surfaces[J]. Appl. Mech. Rev., 2004, 57(3): B15-B15.
52 Sussman M, Puckett E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337.
53 Chakraborty I, Biswas G, Ghoshdastidar P S. Bubble generation in quiescent and co-flowing liquids[J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4673-4688.
54 Sun D, Tao W. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows[J]. International Journal of Heat and Mass Transfer, 2010, 53(4): 645-655.
55 Li S, Chen R, Wang H, et al. Numerical investigation of the moving liquid column coalescing with a droplet in triangular microchannels using CLSVOF method[J]. Science Bulletin, 2015, 60(22): 1911-1926.
[1] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[2] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[3] 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
[4] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[5] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[6] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[7] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[8] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[9] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[10] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[11] 温宏炎, 张玉明, 纪德馨, 张光义. 油泥焦与褐煤共燃特性及动力学[J]. 化工学报, 2020, 71(2): 755-765.
[12] 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574.
[13] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[14] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[15] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 陈光文, 袁权. 微化工技术 [J]. 化工学报, 2003, 54(4): 427 -439 .
[4] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[5] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[6] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[7] 葛善海,衣宝廉,徐洪峰. 质子交换膜燃料电池水传递模型 [J]. CIESC Journal, 1999, 50(1): 39 -48 .
[8] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[9] 陈光文;赵玉潮;袁权.

微尺度下液-液流动与传质特性的研究进展

[J]. CIESC Journal, 2010, 61(7): 1627 -1635 .
[10] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .