化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 411-416.doi: 10.11949/0438-1157.20190926

• 能源和环境工程 • 上一篇    下一篇

某高校既有建筑室内人员相关VOCs目标污染物的实测分析

贾亚宾1(),郑旭1,高凯2,关军1(),魏翩1,祁冰3,郑慧研3   

  1. 1.南京理工大学能源与动力工程学院,江苏 南京 210094
    2.北京世坤环境科技有限公司,北京 100012
    3.河南省建筑科学研究院有限公司,河南 郑州 450000
  • 收稿日期:2019-08-12 修回日期:2020-01-03 出版日期:2020-04-25 发布日期:2020-01-08
  • 通讯作者: 关军 E-mail:195734478@qq.com;guanjun@njust.edu.cn
  • 作者简介:贾亚宾(1994—),男,硕士研究生,195734478@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFC0704400);住房和城乡建设部科学技术计划项目(2018-K1-017);亚热带建筑科学国家重点实验室开放基金项目(2018ZB17)

Field investigation on human related VOCs in existing buildings in one university

Yabin JIA1(),Xu ZHENG1,Kai GAO2,Jun GUAN1(),Pian WEI1,Bing QI3,Huiyan ZHENG3   

  1. 1.School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    2.Beijing Shikun Environmental Technology Co. , Ltd, Beijing 100012, China
    3.Henan Provincial Academy of Building Research, Zhengzhou 450000, Henan, China
  • Received:2019-08-12 Revised:2020-01-03 Online:2020-04-25 Published:2020-01-08
  • Contact: Jun GUAN E-mail:195734478@qq.com;guanjun@njust.edu.cn

摘要:

为研究高校既有建筑室内人群散发对室内VOCs的影响,对高校不同人群样本的教室及会议室两类典型人群密集房间,共82个人群样本对象进行了VOCs采样分析,得到不同实际场景下的人员相关的VOCs浓度水平,并对其潜在的影响因素进行分析。结果表明,共确认了29种与室内人员相关的高检出率且较高浓度值的物质,包括芳香族化合物9种,烷烯烃类9种,酮类和醛类8种,醇酯类以及卤化物3种,并得到主要VOCs物质的浓度水平和I/O比。对影响因素的统计分析表明,室内人员密度、季节和房间类型对不同VOCs物质存在显著性影响,其中季节性因素对目标VOCs污染物影响最为广泛,其次是房间类型与室内人员密度。该研究可为进一步了解人员密集室内VOCs污染现状及控制策略提供一定的科学参考。

关键词: 高校建筑, 人员散发, 可挥发性有机化合物, 测量, 苯, 烷烃

Abstract:

In order to study the influence of occupants on the indoor VOCs in universities, we conducted VOCs sampling campaign in 82 densely occupied classrooms and conference rooms in one university. The VOCs concentration levels and influencing factors were analyzed. The results showed that 29 human related VOCs species with high detection rate and higher concentration values were confirmed, including 9 kinds of aromatic compounds, 9 kinds of alkanes, 8 kinds of ketones and aldehydes and 3 kinds of alcohol esters and halides, and the concentration levels and I/O ratios of the main VOCs substances were obtained. Statistical analysis of the influencing factors showed that indoor occupancy rate, season and room type have significant effects on different VOCs species, in which seasonal factors have the highest degree of influence on target VOCs pollutants, followed by room type and indoor occupancy rate. This research can provide a scientific reference for further understanding of indoor VOCs pollution and control strategies in densely occupied buildings.

Key words: university building, human emission, VOCs, measurement, benzene, alkane

中图分类号: 

  • X 830

图1

样本房间类型"

表1

主要目标检出物的浓度水平及I/O比"

VOCs 物质名称DR/%室内/(μg/m3)

室外/

(μg/m3)

I/O比
Med.Min.Max.Med.Med.
芳香族化合物(9种)
甲苯1005.441.0131.574.681.16
苯甲醛1001.500.185.362.220.68
对二甲苯1003.330.4118.272.921.14
1001.100.2342.920.791.39
乙苯1001.840.3913.291.431.29
邻二甲苯1001.060.207.271.001.06
98.81.080.174.811.330.81
苯乙烯95.10.530.078.910.700.76
1,3,5-三甲基苯58.50.470.113.290.361.30
烷烯烃(9种)
庚烷98.80.440.163.600.391.13
己烷93.90.620.0327.770.621.00
四氯乙烯91.50.230.071.280.161.44
柠檬烯85.42.360.2545.090.405.90
十二烷79.30.460.083.810.291.59
十一烷79.30.290.082.360.181.61
癸烷76.80.380.072.230.410.93
异戊二烯65.90.40.0518.960.094.44
戊烷50.07.330.4670.026.561.12
醛酮类(8种)
环己酮1000.360.102.950.191.89
2-丁酮98.80.360.101.690.420.86
己醛97.60.860.186.800.322.69
壬醛96.34.220.4323.042.571.64
癸醛95.14.880.6233.271.942.52
丙酮91.51.200.154.380.881.36
6-MHO90.21.300.0914.180.225.91
戊醛79.30.140.070.750.141.00
醇酯类以及卤化物(3种)
乙酸乙酯1000.780.1314.210.781.00
乙酸丁酯1000.950.177.000.711.34
对二氯苯81.71.740.1213.330.1710.2

表2

无人与人员密集状态的统计分析结果"

VOCs种类平均值/(μg/m3)标准差/(μg/m3)p
有人无人有人无人
甲苯10.498.925.617.090.619
苯甲醛1.611.620.640.570.072
对二甲苯4.034.142.112.520.455
4.983.389.635.770.608
乙苯2.682.792.522.540.136
邻二甲苯1.671.991.281.320.342
1.661.820.890.940.139
己烷0.780.870.530.460.770
柠檬烯4.852.408.021.830.008
异戊二烯2.311.793.763.710.024
戊烷9.1215.097.4012.750.083
己醛0.900.680.420.300.001
壬醛4.073.041.831.790.001
癸醛4.603.262.562.520.002
丙酮1.371.130.710.550.023
6-MHO2.550.881.931.320.000
乙酸乙酯0.981.400.811.700.118
乙酸丁酯0.940.910.420.410.906
对二氯苯3.330.672.890.640.000

表3

不同季节的统计对比"

VOCs种类平均值/(μg/m3)标准差/(μg/m3)p
过渡夏季冬季过渡夏季冬季
甲苯5.327.268.204.394.084.480.000
苯甲醛1.762.071.230.780.970.740.000
对二甲苯3.703.445.111.781.883.840.053
1.385.081.491.0010.370.990.156
乙苯1.901.852.780.890.822.700.530
邻二甲苯1.151.212.100.560.851.750.005
0.971.311.730.410.521.000.000
己烷0.560.613.020.200.336.290.001
柠檬烯5.012.253.8710.131.642.730.002
异戊二烯0.403.480.590.284.590.390.003
戊烷19.498.475.4819.475.216.630.002
己醛1.151.180.891.020.780.580.012
壬醛6.156.172.924.113.331.590.000
癸醛7.408.392.845.755.191.250.000
丙酮1.481.630.990.720.760.510.000
6-MHO2.172.841.302.722.390.960.002
乙酸乙酯0.810.712.210.660.363.150.000
乙酸丁酯1.230.931.151.140.420.740.246
对二氯苯1.963.612.731.404.352.290.308

表4

不同房间类型的统计对比"

VOCs种类平均值/(μg/m3)标准差/(μg/m3)p
教室会议室教室会议室
甲苯6.159.023.773.970.001
苯甲醛1.561.950.820.970.011
对二甲苯3.765.092.373.440.001
1.106.000.7610.060.000
乙苯2.102.391.831.460.030
邻二甲苯1.401.851.111.590.018
1.291.330.810.520.068
己烷1.830.734.720.310.155
柠檬烯3.554.945.947.900.087
异戊二烯1.351.073.011.750.131
戊烷10.9316.948.8620.690.322
己醛0.891.580.441.350.000
壬醛4.536.952.495.360.021
癸醛5.837.633.867.570.979
丙酮1.271.670.590.940.080
6-MHO1.593.661.353.590.000
乙酸乙酯1.350.932.230.790.283
乙酸丁酯0.981.550.471.440.019
对二氯苯2.233.771.804.200.695
1 Kosonen R, Tan F. The effect of perceived indoor air quality on productivity loss[J]. Energy and Buildings, 2004, 36(10): 981-986.
2 Wang C, Yang X, Guan J, et al. Source apportionment of volatile organic compounds (VOCs) in aircraft cabins[J]. Building & Environment, 2014, 81(81): 1-6.
3 王超. 大型客机座舱内挥发性有机化合物特征及源解析研究[D]. 北京: 清华大学, 2014.
Wang C. Characteristics and source analysis of volatile organic compounds in the cockpit of large passenger aircraft[D]. Beijing: Tsinghua University, 2014.
4 Christof S, Edtbauer A, Williams J. Real world volatile organic compound emission rates from seated adults and children for use in indoor air studies[J]. Indoor Air, 2017, 28(1): 164-172.
5 Liu S, Li R, Wild R, et al. Contribution of human-related sources to indoor volatile organic compounds in a university classroom[J]. Indoor Air, 2016, 26(6): 925-938.
6 Goodman N, Wheeler A, Paevere P, et al. Indoor volatile organic compounds at an Australian university[J]. Building and Environment, 2018, 135: 344-351.
7 Yurdakul S, Civan M, Ö Özden, et al. Spatial variation of VOCs and inorganic pollutants in a university building[J]. Atmospheric Pollution Research, 2017, 8(1): 1-12.
8 Chan D, Tam C, Jones A P. An inter-comparison of VOCs types and distribution in different indoor environments in a university campus[J]. Indoor and Built Environment, 2007, 16(4): 376-382.
9 Mainka A, Br Goszewska E, Kozielska B, et al. Indoor air quality in urban nursery schools in Gliwice, Poland: analysis of the case study[J]. Atmospheric Pollution Research, 2015, 6(6): 1098-1104.
10 Godwin C, Batterman S. Indoor air quality in Michigan schools[J]. Indoor Air, 2007, 17(2): 109-121.
11 Pegas P, Evtyugina M, Alves C, et al. Outdoor/indoor air quality in primary schools in Lisbon: a preliminary study[J]. Quimica Nova, 2010, 33(5): 1145-1149.
12 Sofuoglu S, Aslan G, Inal F, et al. An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools[J]. International Journal of Hygiene and Environmental Health, 2011, 214(1): 36-46.
13 Villanueva F, Tapia A, Lara S, et al. Indoor and outdoor air concentrations of volatile organic compounds and NO2, in schools of urban, industrial and rural areas in Central-Southern Spain[J]. Science of the Total Environment, 2018, 622: 222-235.
14 Madureira J, Paciência I, Rufo J, et al. Indoor air quality in schools and its relationship with children s respiratory symptoms[J]. Atmospheric Environment, 2015, 118: 145-156.
15 Chan D, Tam C, Jones A P. An inter-comparison of VOCs types and distribution in different indoor environments in a university campus[J]. Indoor and Built Environment, 2007, 16(4): 376-382.
16 Ho S, Ip H, Ho K, et al. Evaluation of hazardous airborne carbonyls on a university campus in southern China[J]. Journal of the Air and Waste Management Association, 2014, 64(8): 903-916.
17 Guan J, Gao K, Wang C, et al. Measurements of volatile organic compounds in aircraft cabins (I): Methodology and detected VOCs species in 107 commercial flights[J]. Building and Environment, 2014, 72: 154-161.
18 Sun X, He J, Yang X. Human breath as a source of VOCs in the built environment (I): A method for sampling and detection species[J]. Building and Environment, 2017, 125: 565-573.
19 Schwarz K, Pizzini A, Arendacka B, et al. Breath acetone-aspects of normal physiology related to age and gender as determined in a PTR-MS study[J]. Journal of Breath Research, 2009, 3(2): 27003.
20 Arendacka B, Schwarz K, Stolc S, et al. Variability issues in determining the concentration of isoprene in human breath by PTR-MS[J]. Journal of Breath Research, 2008, 2(3): 037007.
21 EPA. Initial List of Hazardous Air Pollutants with Modifications[EB/OL]. https: //.
22 Del Rio R, Hara M O, Holt A, et al. Volatile biomarkers in breath associated with liver cirrhosis-comparisons of pre- and post-liver transplant breath samples[J]. EBiomedicine, 2015, 2(9): 1243-1250.
23 孙筱. 人体散发VOCs的特性及人与环境的相互作用研究[D].北京: 清华大学, 2017.
Sun X. The characteristics of human body VOCs and the interaction between human and environment [D]. Beijing: Tsinghua University, 2017.
24 Yang S, Gao K, Yang X. Volatile organic compounds (VOCs) formation due to interactions between ozone and skin-oiled clothing: measurements by extraction-analysis-reaction method[J]. Building and Environment, 2016, 103: 146-154.
25 Gao K, Xie J, Yang X. Estimation of the contribution of human skin and ozone reaction to volatile organic compounds (VOCs) concentration in aircraft cabins[J]. Building and Environment, 2015, 94: 12-20.
26 Fuchs P, Loeseken C, Schubert J K, et al. Breath gas aldehydes as biomarkers of lung cancer[J]. International Journal of Cancer, 2010, 126(11): 2663-2670.
27 Li M, Yang D, Brock G, et al. Breath carbonyl compounds as biomarkers of lung cancer[J]. Lung Cancer, 2015, 90(1): 92-97.
28 Ma W, Liu X, Pawliszyn J. Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration[J]. Analytical and Bioanalytical Chemistry, 2006, 385(8): 1398-1408.
29 Cope K, Watson M, Foster W, et al. Effects of ventilation on the collection of exhaled breath in humans[J]. Journal of Applied Physiology, 2004, 96(4): 1371-1379.
30 Edwards R D, Jurvelin J, Koistinen K, et al. VOCs source identification from personal and residential indoor, outdoor and workplace microenvironment samples in EXPOLIS-Helsinki, Finland[J]. Atmospheric Environment, 2001, 35(28): 4829-4841.
31 Niu Y, Wang R, Xiao Z, et al. Characterization of ester odorants of apple juice by gas chromatography-olfactometry, quantitative measurements, odour threshold, aroma intensity and electronic nose[J]. Food Research International, 2019, 120: 92-101.
[1] 张绍志, 李扬, 徐以洋, 郑幼明, 栾天, 卢衡. 基于红外测温的文物冷冻干燥监测技术[J]. 化工学报, 2020, 71(S1): 245-251.
[2] 史璐璐. 大型民用飞机座舱区域多级温度控制系统的研究[J]. 化工学报, 2020, 71(S1): 322-327.
[3] 韩建年, 王刚, 杨梅, 刘美佳, 高成地, 高金森. 费托蜡催化裂化反应生产清洁汽油的热力学分析[J]. 化工学报, 2020, 71(S1): 38-45.
[4] 亓士超, 朱蓉蓉, 刘昕, 薛丁铭, 刘晓勤, 孙林兵. 乙二胺不同掺杂模式下多孔有机聚合物对CO2的吸附[J]. 化工学报, 2020, 71(4): 1666-1675.
[5] 高文强, 焦纬洲, 刘有智. 超重力强化O3/H2O2氧化甲苯合成苯甲酸的研究[J]. 化工学报, 2020, 71(3): 1045-1052.
[6] 杜宇浩, 阎高伟, 李荣, 王芳. 基于局部线性嵌入的测地线流式核多工况软测量建模方法[J]. 化工学报, 2020, 71(3): 1278-1287.
[7] 杨锋苓, 张翠勋, 李美婷. 柔性Rushton搅拌桨混合性能的实验研究[J]. 化工学报, 2020, 71(2): 626-632.
[8] 高君安, 王伟, 张傑, 雷志刚, 史东军, 曲令多. 用于高湿度废气中甲苯吸附净化的疏水型ZSM-5分子筛的合成及其吸附性能研究[J]. 化工学报, 2020, 71(1): 337-343.
[9] 毛建新, 袁子卿, 严红绡, 周仁贤. 添加Sm对Pt /SBA-15催化苯完全氧化反应活性和热稳定性的影响[J]. 化工学报, 2020, 71(1): 306-313.
[10] 宋思婕,姚加,李浩然. 离子液体汽化焓的测量方法[J]. 化工学报, 2020, 71(1): 26-33.
[11] 李琳, 夏淑倩, 商巧燕, 马沛生. CO2-环烷烃/芳香烃界面张力的测定与估算[J]. 化工学报, 2020, 71(1): 254-264.
[12] 孟凡斌, 段卜月, 李栋, 王迪, 吕妍. 管道高温壁面辐射对激光测量天然气含水量影响分析[J]. 化工学报, 2019, 70(S2): 215-219.
[13] 孙艳军, 邸高雷, 夏娟, 王晓坡, 龚娜. 不同冷冻润滑油对HFO1234yf溶解吸收特性的研究[J]. 化工学报, 2019, 70(S2): 25-30.
[14] 侯延彬,高宪文,李翔宇. 采油过程多尺度状态特征生成的有杆泵动态液面预测[J]. 化工学报, 2019, 70(S2): 311-321.
[15] 钟秋,杨莉萍,陶冶,雒彩云,徐子君,汪文兵. 磁环境温度测量信号偏差实验研究[J]. 化工学报, 2019, 70(S2): 349-355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 刘海燕, 于建宁, 鲍晓军. 能源工业中的技术预见[J]. 化工学报, 2006, 57(8): 1817 -1826 .
[3] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[4] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[5] 周明华; 吴祖成. 含酚模拟废水的电催化降解 [J]. CIESC Journal, 2002, 53(1): 40 -44 .
[6] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[7] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .
[8] 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788 -800 .
[9] 陈小艳, 周骛, 蔡小舒, 黄燕, 袁益超. 大型喷雾粒径分布的图像法测量[J]. 化工学报, 2014, 65(2): 480 -487 .
[10] 吴美容, 张瑞, 周俊, 谢欣欣, 雍晓雨, 闫志英, 葛明民, 郑涛. 温度对产甲烷菌代谢途径和优势菌群结构的影响[J]. 化工学报, 2014, 65(5): 1602 -1606 .