化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 228-236.doi: 10.11949/0438-1157.20190512

• 流体力学与传递现象 • 上一篇    下一篇

湍流聚团过程中非球形颗粒聚团碰撞频率分析研究

郑建祥(),李玉凯,孙笑楠,周怀春()   

  1. 东北电力大学能源与动力工程学院,吉林省 吉林市 132012
  • 收稿日期:2019-05-15 修回日期:2019-06-17 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 周怀春 E-mail:59745289@qq.com;hczhou@neepu.edu.cn
  • 作者简介:郑建祥(1977—),男,博士,副教授,59745289@qq.com
  • 基金资助:
    吉林省科技厅十三五重点科技研发项目(20180201001SF);吉林市科技创新发展项目(201750238);吉林省教育厅“十三五”科研目(JJKH20190703KJ)

Analysis of collision frequency of non-spherical particle agglomeration during turbulent agglomeration processes

Jianxiang ZHENG(),Yukai LI,Xiaonan SUN,Huaichun ZHOU()   

  1. School of Energy and Power Engineering, Northeast Dianli University, Jilin 132012, Jilin, China
  • Received:2019-05-15 Revised:2019-06-17 Online:2019-09-05 Published:2019-11-07
  • Contact: Huaichun ZHOU E-mail:59745289@qq.com;hczhou@neepu.edu.cn

摘要:

基于群体平衡模型(PBM)和计算流体动力学(CFD)的耦合方法模拟了湍流聚并器中黏性颗粒的聚团过程和流化行为。考虑到流体作用力和范德华力对颗粒聚团的影响,引入了聚团碰撞效率,同时考虑非球形颗粒聚团局部孔隙率沿径向逐渐增大的影响,引入分形维数。通过碰撞效率和分形维数对碰撞频率模型进行了改进。并与EDEM模拟计算结果和实验结果进行了对比。体积分数的结果显示,EDEM模拟的结果与实验结果的平均相对误差为16.34%,而改进模型与实验结果的平均相对误差仅为7.39%。而数量分数方面,EDEM模拟的结果与实验结果的平均绝对误差为5.36%,而改进模型与实验结果的平均绝对误差仅为2.28%。因此改进模型模拟结果更接近实验结果。

关键词: 群体平衡模型, 碰撞频率, 聚团, 碰撞效率, 分形维数

Abstract:

The agglomeration processes and fluidization behavior of cohesive particles in a turbulent agglomerator were simulated based on the coupled model of population balance method (PBM) and computational fluid dynamics (CFD). The agglomeration collision frequency model was improved by introducing the collision agglomeration efficiency and fractal dimension. The agglomeration collision efficiency was introduced by considering the influence of hydrodynamic force and van der Waals force on particle agglomeration. At the same time, the fractal dimension were introduced by considering the influence of the local porosity of non-spherical particle agglomeration increasing gradually in the radial direction. Thus the results of the simulation using the improved model compared with the EDEM simulation results and the experimental results. The volume fraction results show that the average relative error between the EDEM simulation results and the experimental results was 16.34%, while the average relative error between the improved model and the experimental results was only 7.39%. In terms of fraction of the agglomeration number, the average absolute error between the EDEM simulation results and the experimental results was 5.36%, while the average absolute error between the improved model and the experimental results was only 2.28%. Therefore, the improved model simulation results were closer to the experimental results.

Key words: population balance model, collision frequency, agglomeration, collision efficiency, fractal dimension

中图分类号: 

  • TQ 028.8

表1

"

聚团类型碰撞频率模型
布朗聚团
Einstein[32]βbro(v,u)=B2C(v)v1/3+C(u)u1/3(v1/3+u1/3)(7)
考虑分形[32]βbro(v,u)=B21vf+1uf(vf+uf)+B2?νρ0f-1/31v2f+1u2f(vf+uf)(8)
修正βbro(v,u)=ψi,jB21vf+1uf(vf+uf)+B2?vρ0f-1/31v2f+1u2f(vf+uf)(9)
湍流聚团
Saffman和Turner[37]βtur(v,u)=910π1/2εdν1/2(v1/3+u1/3)3(10)
考虑分形[34]βtur(v,u)=910π1/2εdν1/2vρ01-3f(vf+uf)3(11)
修正βtur(v,u)=ψi,j910π1/2εdν1/2vρ01-3f(vf+uf)3(12)
线性相加βi,j=βbro+βtur(13)
均方根βi,j=βbro2+βtur2(14)
DEM[35]βi,j=Ci,jψi,j(15)
Ci,j=NCi,jPPνaggregationNPiNPjtsim(16)
ψi,j=3Umaxmpwˉ2+1exp-3Umaxmpwˉ2(17)

图1

湍流聚并器及计算域的局部网格示意图"

图2

不同碰撞频率之间的对比"

图3

均方根碰撞频率与EDEM/聚团模拟结果的对比"

图4

颗粒体积分数及湍动耗散能"

图5

EDEM模拟[式(15)]和RMS模拟[Df=2.5时式(14)]的体积分数的对比"

表2

不同粒径范围内颗粒体积分数的变化"

d/μm

入口/

%

实验

出口/%

出口

(EDEM模拟)

出口

(修正耦合模拟)

体积

分数/%

相对

误差/%

体积

分数/%

相对

误差/%

<2.512.432.252.6517.782.154.44
2.5~531.444.555.2515.384.158.79
5~1056.1314.8817.2415.8616.218.94
10~20056.2470.027.3366.531.98
>20013.094.8463.0310.9616.27

表3

不同粒径范围内颗粒数量分数的变化"

d/μm

入口/

%

实验出口/

%

出口(EDEM模拟)出口(修正耦合模拟)

数量

分数/%

绝对

误差/%

数量

分数/%

绝对

误差/%

<2.570.0373.1676.763.674.551.39
2.5~527.1218.607.2711.3313.455.15
5~102.854.535.671.144.830.3
10~2003.428.214.796.222.8
>2000.282.091.810.950.67
1 LiH, ZhangJ, ZhaoY, et al. Wettability of fly ashes from four coal-fired power plants in China[J]. Industrial & Engineering Chemistry Research, 2011, 50(13): 7763-7771.
2 IlyasS U, PendyalaR, MarneniN. Preparation, sedimentation, and agglomeration of nanofluids[J]. Chemical Engineering & Technology, 2014, 37(12): 2011-2021.
3 BorchertC, SundmacherK. Crystal aggregation in a flow tube: image‐based observation[J]. Chemical Engineering & Technology, 2011, 34(4): 545-556.
4 郑建祥, 许帅, 王京阳, 等. 基于微分代数积分矩量法的聚并器超细颗粒聚团研究[J]. 化工学报, 2017, 68(1): 119-128.
ZhengJ X, XuS, WangJ Y, et al. Study on agglomeration of ultrafine particles by agglomerator based on differential algebraic integral moment method[J]. CIESC Journal, 2017, 68(1): 119-128.
5 LiH, HongR, WangZ. Fluidizing ultrafine powders with circulating fluidized bed[J]. Chemical Engineering Science, 1999, 54(22): 5609-5615.
6 IlyasS U, PendyalaR, MarneniN. Dispersion behaviour and agglomeration effects of zinc oxide nanoparticles in ethanol water mixtures[J]. Materials Research Innovations, 2014, 18(suppl.6: 179-183.
7 WangZ, KwaukM, LiH. Fluidization of fine particles[J]. Chemical Engineering Science, 1998, 53(3): 377-395.
8 ZhengZ, LiH, ZhuQ, et al. Experimental study and numerical simulation of bubbling fluidized beds with fine particles in two and three dimensions[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11302-11312.
9 ValverdeJ M, CastellanosaA, QuintanillaaM A S, et al. Effect of inclination on gas-fluidized beds of fine cohesive powders[J]. Powder Technology, 2008, 182(3): 398-405.
10 郑建祥, 王京阳, 许帅. 聚并器内颗粒聚团数值模拟[J]. 东北电力大学学报, 2017, 37(4): 52-55.
ZhengJ X, WangJ Y, XuS. Numerical simulation of particle aggregation in a clusterer[J]. Journal of Northeast Electric Power University, 2017, 37(4): 52-55.
11 WangY, ZouZ, LiH, et al. A new drag model for TFM simulation of gas-solid bubbling fluidized beds with Geldart-B particles[J]. Particuology, 2014, 15(4): 151-159.
12 刘含笑, 姚宇平, 郦建国. 凝聚器二维单扰流柱流场中颗粒凝并模拟[J]. 动力工程学报, 2015, 35(4): 292-297.
LiuH X, YaoY P, LiJ G. Simulation of particle coagulation in two-dimensional single spoiler flow field of condenser[J]. Journal of Power Engineering, 2015, 35(4): 292-297.
13 刘岑凡, 张楠, 王维. 鼓泡床中基于气泡结构的多相反应模型[J]. 化工学报, 2018, 69(5): 2057-2062.
LiuC F, ZhangN, WangW. Multiphase reaction model based on bubble structure in bubbling beds[J]. CIESC Journal, 2018, 69(5): 2057-2062.
14 吕小林. 基于气泡和聚团的结构模型及其应用[J]. 化工进展, 2017, 36: 72.
LüX L. Structural model based on bubbles and agglomeration and its application[J]. Chemical Industry and Engineering Progress, 2017, 36: 72.
15 宋素芳, 郝振华, 董立波, 等. bubble-based EMMS/PFB模型的建立及在加压流化床浓相段的应用[J]. 化工学报, 2017, 68(8): 46-53.
SongS F, HaoZ H, DongL B, et al. Establishment of bubble-based EMMS/PFB model and its application in pressurized fluidized bed dense phase section[J]. CIESC Journal, 2017, 68(8): 46-53.
16 XuC, ZhuJ. Experimental and theoretical study on the agglomeration arising from fluidization of cohesive particles—effects of mechanical vibration[J]. Chemical Engineering Science, 2005, 60(23): 6529-6541.
17 TaoZ, LiH. Force balance modelling for agglomerating fluidization of cohesive particles[J]. Powder Technology, 2000, 111(1): 60-65.
18 WangL, MarchisioD L, VigilR D, et al. CFD simulation of aggregation and breakage processes in laminar Taylor-Couette flow[J]. Journal of Colloid & Interface Science, 2005, 282(2): 380-396.
19 MarchisioD L, VigilR D, FoxR O. Quadrature method of moments for aggregation-breakage processes[J]. J. Colloid Interface Sci., 2003, 258(2): 322-334.
20 PinskyM, KhainA, ShapiroM. Collisions of small drops in a turbulent flow (I): Collision efficiency. Problem formulation and preliminary results[J]. Journal of the Atmospheric Sciences, 1997, 56(15): 2585-2600.
21 CameronI T, WangF Y, ImmanuelC D, et al. Process systems modelling and applications in granulation: a review[J]. Chemical Engineering Science, 2005, 60(14): 3723-3750.
22 SunJ, BattagliaF. Hydrodynamic modeling of particle rotation for segregation in bubbling gas-fluidized beds[J]. Chemical Engineering Science, 2006, 61(5): 1470-1479.
23 SongS, LuS, ZhangY, et al. Aggregation rate of fine particles in turbulent flows[J]. Journal of Dispersion Science and Technology, 2004, 25(1): 8.
24 LuG, ThirdJ R, MüllerC R. Effect of wall rougheners on cross-sectional flow characteristics for non-spherical particles in a horizontal rotating cylinder[J]. Particuology, 2014, 12(1): 44-53.
25 MartínL D, FabreA, OmmenJ R V. The fractal scaling of fluidized nanoparticle agglomerates[J]. Chemical Engineering Science, 2014, 112(12): 79-86.
26 NamC H, PfefferR, DaveR N, et al. Aerated vibrofluidization of silica nanoparticles[J]. AIChE Journal, 2004, 50(8): 1776-1785.
27 ValverdeJ M, CastellanosA. Fluidization of nanoparticles: a modified Richardson‐Zaki Law[J]. AIChE Journal, 2010, 52(2): 838-842.
28 章鹏飞, 米建春, 潘祖明. 装置元件排列间距和颗粒浓度对细颗粒湍流聚并的影响[J]. 中国电机工程学报, 2016, 36(6): 1625-1632.
ZhangP F, MiJ C, PanZ M. Influences of elemental arrangement and particle concentration on fine particle amalgamation[J]. Proceedings of the CSEE, 2016, 36(6): 1625-1632.
29 杨岳. 基于雷诺时均NS方程的船体绕流数值研究[D]. 大连: 大连海事大学, 2016.
YangY. Numerical study of hull flow around the Reynolds time-averaged NS equation [D]. Dalian : Dalian Maritime University, 2016.
30 郑建祥, 王京阳, 李玉凯, 等. 基于修正的颗粒动理学模型超细颗粒聚团流动模拟研究[J]. 热能动力工程, 2019, 34(2): 117-123.
ZhengJ X, WangJ Y, LiY K, et al. Simulation of ultrafine particle agglomeration flow based on modified particle kinetic model[J]. Thermal Energy Engineering, 2019, 34(2): 117-123.
31 AhujaG N, PatwardhanA W. CFD and experimental studies of solids hold-up distribution and circulation patterns in gas-solid fluidized beds[J]. Chemical Engineering Journal, 2008, 143(1/2/3): 147-160.
32 EinsteinA. Investigation on the Theory of the Brownian Movement[M]. New York: Dover,1956.
33 ParkS H, LeeK W, OttoE, et al. The log-normal size distribution theory of Brownian agglomeration for the entire particle size range[J]. Journal of Aerosol Science, 1997, 28(28): S23-S24.
34 TanH S, GoldschmidtM J V, BoerefijnR, et al. Building population balance model for fluidized bed melt granulation: lessons from kinetic theory of granular flow[J]. Powder Technology, 2004, 142(2): 103-109.
35 GengJ, ParkH, SajoE. Simulation of aerosol coagulation and deposition under multiple flow regimes with arbitrary computational precision[J]. Aerosol Science & Technology, 2013, 47(5): 530-542.
36 GoldsteinR. Fluid Mechanics Measurements [M]. 2nd Ed. Boca Raton: CRC Press, 1996: 80-96.
37 SaffmanP G, TurnerJ S. On the collision of drops in turbulent clouds[J]. Journal of Fluid Mechanics, 1956, 1(1): 16.
[1] 辛亚男, 张建文, 张淑珍, 姜爱国. 螺旋内槽管内天然气-水-表面活性剂体系的水合物生成动力学计算[J]. 化工学报, 2018, 69(6): 2463-2473.
[2] 高凯歌, 雷玉庄, 李海念, 周勇. 超细粉在声场导向管喷流床中的聚团尺寸预测模型[J]. 化工学报, 2017, 68(6): 2290-2297.
[3] 郑建祥, 许帅, 王京阳, 史梦燚, 汪龙. 基于微分代数积分矩量法的聚并器超细颗粒聚团研究[J]. 化工学报, 2017, 68(1): 119-128.
[4] 吴迎亚, 彭丽, 和宁宁, 高金森, 蓝兴英. 基于DEM模拟气固循环流化床提升管内颗粒聚团特性[J]. 化工学报, 2016, 67(8): 3321-3330.
[5] 吕林英, 蓝兴英, 吴迎亚, 燕兰玲, 高金森, 徐春明. FCC提升管反应器中颗粒聚团对裂化反应的影响[J]. 化工学报, 2015, 66(8): 2920-2928.
[6] 刘作华, 孙瑞祥, 王运东, 陶长元, 刘仁龙. 刚-柔组合搅拌桨强化流体混沌混合[J]. 化工学报, 2014, 65(9): 0-0.
[7] 刘作华, 孙瑞祥, 王运东, 陶长元, 刘仁龙. 刚-柔组合搅拌桨强化流体混沌混合[J]. 化工学报, 2014, 65(9): 3340-3349.
[8] 王擎,戈建新,贾春霞,许晓飞. 干馏终温对油砂半焦表面特性的影响[J]. 化工进展, 2014, 33(04): 891-895.
[9] 彭鑫, 张雨薇, 王梦凡, 齐崴, 苏荣欣, 何志敏. 酶活性部位柔性的分形分析[J]. 化工学报, 2013, 64(2): 671-675.
[10] 丁程兵,陈迁乔,钟 秦. 三种湍流模型下搅拌釜内气含率特性的模拟[J]. 化工进展, 2013, 32(11): 2569-2573.
[11] 丁云飞, 殷帅, 廖云丹, 吴会军. 纳微结构疏水表面结霜过程及抑霜特性[J]. 化工学报, 2012, 63(10): 3213-3219.
[12] 刘作华,宁伟征,孙瑞祥,周小霞,陶长元. 偏心空气射流双层桨搅拌反应器流场结构的分形特征 [J]. CIESC Journal, 2011, 62(3): 628-635.
[13] 王婷, 周丹丹, 董双石, 郑文宇, 杨毅. 锥形流化床混凝装置内混凝指标和絮凝体分形维数 [J]. 化工学报, 2010, 61(5): 1262-1267.
[14] 魏龙, 顾伯勤, 孙见君, 冯飞, 冯秀. 机械密封摩擦副端面分形维数的优化 [J]. 化工学报, 2010, 61(1): 132-136.
[15] 付鹏, 胡松, 向军, 孙路石, 张安超, 杨涛, 江龙. 生物质颗粒孔隙结构在热解过程中的变化 [J]. 化工学报, 2009, 60(7): 1793-1799.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁希钢, 余国琮. Computational Mass Transfer Method for Chemical Process Simulation[J]. CIESC Journal, 2008, 16(4): 497 -502 .
[2] 王良华, 崔觉剑, 姚克俭. Numerical Simulation and Analysis of Gas Flow Field in Serrated Valve Column[J]. CIESC Journal, 2008, 16(4): 541 -546 .
[3] 陈光文, 乐军, 袁权. Gas-Liquid Microreaction Technology:Recent Developments and Future Challenges[J]. Chinese Journal of Chemical Engineering, 2008, 16(5): 663 -669 .
[4] 魏晓琨, 丁庆豹, 欧伶, 张鹭, 王昌禄. Two-step Enzymatic Synthesis of Guanine Arabinoside[J]. CIESC Journal, 2008, 16(6): 934 -937 .
[5] 杨小健, 殷绚, 欧阳平凯. Simulation of 1, 3-Butadiene Production Process by Dimethylfomamide Extractive Distillation[J]. CIESC Journal, 2009, 17(1): 27 -35 .
[6] 吕阳成, 林泉, 骆广生, 戴猷元. Solubility of Emodin in Alcohols[J]. CIESC Journal, 2009, 17(2): 251 -253 .
[7] 方健才, 陈晓, 夏启斌, 奚红霞, 李忠. Effect of Relative Humidity on Catalytic Combustion of Toluene over Copper Based Catalysts with Different Supports[J]. CIESC Journal, 2009, 17(5): 767 -772 .
[8] 王丽红, 李德玲, 程丽华, 张林, 陈欢林. Preparation of Thin Film Composite Nanofiltration Membrane by Interfacial Polymerization with 3,5-Diaminobenzoylpiperazine and Trimesoyl Chloride[J]. CIESC Journal, 2011, 19(2): 262 -266 .
[9] 蔡继勇,罗毓珊,陈听宽. 水平管内油气两相弹状流的产生 [J]. CIESC Journal, 1999, 50(1): 88 -93 .
[10] 魏文德,唐士培,李蕴昌. 氯苯制造的研究 [J]. CIESC Journal, 1951, 2(3): 71 -79 .