化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1035-1044.doi: 10.11949/0438-1157.20190697

• 流体力学与传递现象 • 上一篇    下一篇

内热型超声雾化溶液再生系统最优内热量的研究

倪辉(),杨自力(),钟珂,陶睿杨,谷雨倩   

  1. 东华大学环境科学与工程学院,上海 201620
  • 收稿日期:2019-06-20 修回日期:2019-10-21 出版日期:2020-03-05 发布日期:2019-11-02
  • 通讯作者: 杨自力 E-mail:916775781@qq.com;ziliy@dhu.edu.cn
  • 作者简介:倪辉(1995—),男,硕士研究生,916775781@qq.com
  • 基金资助:
    上海市青年科技英才扬帆计划(19YF1401800);中央高校基本科研业务费专项资金(2232018D3-36);中国博士后基金项目(2018M630385)

Study on optimal heating power for internally-heated ultrasonic atomization liquid desiccant regeneration system

Hui NI(),Zili YANG(),Ke ZHONG,Ruiyang TAO,Yuqian GU   

  1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2019-06-20 Revised:2019-10-21 Online:2020-03-05 Published:2019-11-02
  • Contact: Zili YANG E-mail:916775781@qq.com;ziliy@dhu.edu.cn

摘要:

基于质量守恒、能量守恒定律,建立了内热型超声雾化溶液再生系统(IH-UARS)的再生性能预测模型并进行了充分的实验验证,通过研究不同内热量下IH-UARS的再生性能及其变化规律,寻求系统所需的最佳内热量并明确其可能的影响因素。结果表明:IH-UARS系统存在最优的内热量范围,使其再生系统性能最佳;所需最优内热量随着再生溶液流量增大呈显著的对数增长,但受空气流量的影响较弱;在该研究中的标准工况下,IH-UARS所需最优内热量约为275~350 W。此外研究发现:内热量的增长有益于促进初始浓度较高的溶液进一步浓缩再生,如当IH-UARS中内热量增至800 W时,其初始浓度为36%的溶液比24%的溶液浓度增量指标改善幅度高37%。研究所得结果可对提高溶液再生性能及经济性提供积极参考。

关键词: 超声雾化, 溶液, 再生, 内热量, 最优, 建筑节能

Abstract:

Based on the laws of mass conservation and energy conservation, the regeneration performance prediction model of IH-UARS is established and verified by experiments. Besides, experimental runs were conducted to verify the feasibility of the developed model. The results show that there exists an optimal range of internal heating, which makes the regeneration system present the most energy-efficient regeneration. The optimal heating power was found increasing logarithmically with the growth of the flow rate of the desiccant solution but is weakly affected by the flow rate of the scavenging airflow. Under the standard operating conditions of the present study, the optimal heat power for IH-UARS was around 275 to 350 W. Furthermore, it was also found that the internal heating seems to be more beneficial for regenerating the dilute desiccant solution with a higher initial mass fraction. For instance, by increasing the internal heating power to 800 W, the DMFIGl of the desiccant solution, with inlet concentration of 36% was better than the desiccant solution with inlet concentration of 24%, with the improvement of DMFIGl amplitude reached 37%. The study may help realize the optimal running of the internally-heated desiccant regeneration system.

Key words: ultrasonic atomization, solution, regeneration, internally-heating power, optimal, building energy efficiency

中图分类号: 

  • TU 834.9

图1

内热式超声雾化再生器结构示意及内部热质传递过程"

表1

IH-UARS验证实验运行工况"

参数额定工况变化范围
进口溶液流量Gl,i/(kg·h-1)4513.5~69.5
进口溶液温度tl,i/℃6035~65
进口溶液浓度ni/%2624~32
进口空气流量Ga,i/(kg·h-1)92.568~115.5
进口空气温度ta,i/℃3226~36
进口空气含湿量di/(g·(kg 干空气) -1)1810~22
液气比Gl,i/Ga,i0.490.15~0.75

图2

内热式超声雾化溶液再生系统示意图"

图3

预测模型的实验验证结果"

表2

IH-UARS模型运行工况"

参数额定工况变化范围
进口溶液温度tl,i/℃6035~65
进口溶液浓度ω/%2622~36
进口空气流量Ga,i/(kg·h-1)9011.25~180
进口空气温度ta,i/℃3222~40
进口空气含湿量di/(g·(kg 干空气)-1)1810~28
液气比Gl,i/Ga,i0.50.25~4

图4

不同空气流量下内热量与再生性能的关系"

图5

不同空气流量下SRR及其变化率与内热量的关系"

图6

不同溶液流量下内热量与再生性能的关系"

图7

不同溶液流量下内热量与SRR及其变化率的关系"

图8

不同溶液流量下IH-UARS的最优内热量及其再生性能RR"

图9

不同溶液浓度下再生性能与内热量的关系"

图10

不同加热量下RR与入口溶液浓度之间的关系"

1 刘晓华, 张涛, 江亿. 采用吸湿剂处理湿空气的流程优化分析[J]. 暖通空调, 2011, 41(3): 77-87.
Liu X H, Zhang T, Jiang Y. Optimization of heat and mass transfer processes between desiccant and moist air[J]. Journal of HV&AC, 2011, 41(3): 77-87.
2 Ahmed H A, Ge G M, Carey J S. Performance analysis of a membrane liquid desiccant air-conditioning system[J]. Energy and Buildings, 2013, 62: 559-569.
3 刘晓华, 李震, 张涛. 溶液除湿[M]. 北京: 中国建筑工业出版社, 2014: 23-89.
Liu X H, Li Z, Zhang T. Liquid Desiccant Dehumidification[M]. Beijing: China Architecture & Building Press, 2014: 23-89.
4 殷勇高, 潘雄伟, 陈瑶, 等. 顺流型溶液与空气热质交换性能[J]. 化工学报, 2012, 63: 26-31.
Yin Y G, Pan X W, Chen Y, et al. Heat and mass transfer performance between liquid desiccant and air with parallel flow[J]. CIESC Journal, 2012, 63: 26-31.
5 彭冬根, 程小松, 李霜玲, 等. 一种新型溶液除湿装置数学模型及性能分析[J]. 太阳能学报, 2019, 40(2): 474-479.
Peng D G, Cheng X S, Li S L, et al.Mathematical model and performance analysis of a new liquid desiccant dehumidifer[J]. Acta Energiae Solaris Sinica, 2019, 40(2): 474-479.
6 Zhang T, Liu X H, Jiang J J, et al. Experimental analysis of an internally-cooled liquid desiccant dehumidifier[J]. Building and Environment, 2013, 63: 1-10.
7 Lun W, Li K N, Liu B, et al. Experimental analysis of a novel internally-cooled dehumidifier with self-cooled liquid desiccant[J]. Building and Environment, 2018, 141: 117-126.
8 常晓敏, 刘晓华, 江亿. 内冷型溶液除湿器的热质交换分析及流型比较研究[J]. 太阳能学报, 2009, 30(2): 170-176.
Chang X M, Liu X H, Jiang Y. Research on the heat and mass transfer performance and flow-pattern comparison of the internally-cooled liquid desiccant dehumidifers[J]. Acta Energiae Solaris Sinica, 2009, 30(2): 170-176.
9 张凡, 殷勇高. 一种低位热驱动除湿冷却空调系统的热性能分析[J]. 化工学报, 2016, 67: 275-283.
Zhang F, Yin Y G. Thermal performance analysis of liquid desiccant evaporative cooling air-condetioning system driven by low-grade heat[J]. CIESC Journal, 2016, 67: 275-283.
10 高文忠, 柳建华, 章学来. 太阳能叉流溶液除湿空调除湿性能实验分析[J]. 太阳能学报, 2012, 33(9): 1547-1552.
Gao W Z, Liu J H, Zhang X L. Experimental analysis of dehumidifier in the solar-driven cross-flow liquid desiccant air conditioning[J]. Acta Energiae Solaris Sinica, 2012, 33(9): 1547-1552.
11 彭冬根, 罗丹婷, 程小松. 热回收型太阳能分级溶液集热/再生系统模型及环境适用性分析[J]. 化工学报, 2017, 68(8): 3242-3249.
Peng D G, Luo D T, Cheng X S. Modeling and environmental applicability of solar solution grading collector/regenerator system with heat recovery[J]. CIESC Journal, 2017, 68(8): 3242-3249.
12 程清, 张小松. 一种双级光电光热电渗析再生系统性能研究[J]. 太阳能学报, 2015, 36(8): 1890-1894.
Cheng Q, Zhang X S. Performance analysis of double stage PV/T electrodialysis regeneration system[J]. Acta Energiae Solaris Sinica, 2015, 36(8): 1890-1894.
13 殷勇高, 潘雄伟, 陈瑶, 等. 热空气用于溶液再生实验研究与能效分析[J].工程热物理学报, 2013, 34(4): 596-600.
Yin Y G, Pan X W, Chen Y, et al. Experimental study and energy efficiency analysis of liquid desiccant regeneration using hot air[J]. Journal of Engineering Thermophysics, 2013, 34(4): 596-600.
14 Liu X H, Jiang Y, Chang X M, et al. Experimental investigation of the heat and mass transfer between air and liquid desiccant in a cross-flow regenerator[J]. Renewable Energy, 2007, 32(10): 1623-1636.
15 Liu X H, Jiang Y, Yi X Q. Effect of regeneration mode on the performance of liquid desiccant packed bed regenerator[J]. Renewable Energy, 2009, 34(1): 209-216.
16 戴智超. 不同填料溶液除湿/再生器及热质传递性能研究比较[D]. 南京: 东南大学, 2015.
Dai Z C. Study on different type of fillers liquid dehumidifer/regenerator and their comparison about heat and mass transfer performance[D]. Nanjing: Southeast University, 2015.
17 殷勇高, 郑宝军, 高龙飞,等. 一种新的Z型填料及其溶液再生性能[J]. 化工学报, 2014, 65: 280-285.
Yin Y G, Zheng B J, Gao L F, et al. A novel Z-type packing used for desiccant regenerator[J]. CIESC Journal, 2014, 65: 280-285.
18 钱俊飞, 殷勇高, 潘雄伟, 等. 平板降膜溶液除湿再生过程实验研究及模型验证[J]. 化工学报, 2014, 65(6): 2070-2077.
Qian J F, Yin Y G, Pan X W, et al. Experimental investigation and model validation for liquid desiccant dehumidification and regeneration in falling-film plate[J]. CIESC Journal, 2014, 65(6): 2070-2077.
19 姚晔, 连之伟, 刘世清. 超声波强化再生除湿的除湿空调装置: 200510110441.8[P]. 2005-11-17.
Yao Y, Lian Z W, Liu S Q. Ultrasound-atomizing regeneration/ dehumidification for liquid desiccant air conditioning system: 200510110441.8[P]. 2005-11-17.
20 Wang L, Lian Z W. Improvement of conventional liquid desiccant dehumidification technology[J]. Journal of Southeast University, 2010, 26(2): 212-216.
21 Yao Y, Zhang W J, He B X. Investigation on the kinetic models for the regeneration of silica gel by hot air combined with power ultrasonic[J]. Energy Conversion and Management, 2011, 52(11): 3319-3326.
22 Yao Y. Research and application of ultrasound in HVAC field: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 52-68.
23 王俐, 连之伟, 刘蔚巍. 结合超声雾化技术的液体除湿系统分析[J]. 中南大学学报(自然科学版), 2011, 42(1): 240-246.
Wang L, Lian Z W, Liu W W. Analysis of liquid-desiccant dehumidifying system combined with ultrasound atomization technology[J]. Journal of Central South University (Science and Technology), 2011, 42(1): 240-246.
24 Yang Z L, Zhang K S, Hwang Y, et al. Performance investigation on the ultrasonic atomization liquid desiccant regeneration system[J]. Applied Energy, 2016, 171: 12-25.
25 殷勇高, 李士强, 张小松. 绝热型和内热型再生过程热性能对比[J]. 化工学报, 2010, 61: 157-163.
Yin Y G, Li S Q, Zhang X S. Comparative study on dynamic performance of internally heated and adiabatic regenerators [J]. CIESC Journal, 2010, 61: 157-163.
26 Yin Y G, Zhang X S. Comparative study on internally heated and adiabatic regenerators in liquid desiccant air conditioning system[J]. Building and Environment, 2010, 45(8): 1799-1807.
27 Yin Y G, Zhang X S, Peng D G, et al. Model validation and case study on internally cooled/heated dehumidifier/regenerator of liquid desiccant systems[J]. International Journal of Thermal Sciences, 2009, 48: 1664-1671.
28 Liu J, Zhang T, Liu X H, et al. Experimental analysis of an internally-cooled/heated liquid desiccant dehumidifier/regenerator made of thermally conductive plastic[J]. Energy and Buildings, 2015, 99: 75-86.
29 王琴, 吴薇, 刘松松. 内热型与绝热型溶液再生器再生过程性能[J]. 化工学报, 2016, 67: 186-194.
Wang Q, Wu W, Liu S S. Performance of regeneration processes of internally heated and adiabatic regenerators[J]. CIESC Journal, 2016, 67: 186-194.
30 Conde M R. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design[J]. International Journal of Thermal Sciences, 2004, 43(4): 367-382.
31 Wen T, Lu L, Yang H, et al. Investigation on the regeneration and corrosion characteristics of an anodized aluminum plate regenerator[J]. Energies, 2018, 11(5): 1209-1215.
[1] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[2] 刘小艳, 蔡万欣, 赵立坤, 曾香, 毛旭辉. 活性炭去除游离氯的失效机制及热再生研究[J]. 化工学报, 2020, 71(4): 1781-1790.
[3] 程华农, 邱娜娜, 岳金彩, 郑世清. 采用响应面法降低湿法氧化脱硫中Na2S2O3生成量[J]. 化工学报, 2020, 71(4): 1762-1771.
[4] 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142.
[5] 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368.
[6] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[7] 张宇轩, 翟晓强. 感温变色建筑涂料的制备及光谱反射性能实验研究[J]. 化工学报, 2019, 70(9): 3537-3544.
[8] 陈东良, 张忠林, 杨景轩, 马旭莉, 李鹏, 郝晓刚, 官国清. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945.
[9] 阴义轩, 成婷婷, 鲍晓军, 袁珮. 丁腈橡胶非均相加氢催化剂失活原因及再生性能研究[J]. 化工学报, 2019, 70(7): 2528-2539.
[10] 朱计划, 陈姚, 丘秀莲, 黄宇明, 郑成, 杨伟. 微波辅助溶剂热法制备LiMn1-xMgxPO4/C正极材料[J]. 化工学报, 2019, 70(7): 2775-2785.
[11] 孙燕, 蓝际荣, 郭莉, 孙朋, 叶恒朋, 杜冬云, 占伟. 利用电解锰渣制备As(Ⅲ)吸附材料及其性能研究[J]. 化工学报, 2019, 70(6): 2377-2385.
[12] 张昊, 申凯, 赖艳华, 崔琳, 董勇. 氯化钙溶液喷雾闪蒸再生特性模拟及试验分析[J]. 化工学报, 2019, 70(6): 2269-2278.
[13] 朱勇晨, 李小华, 张小雷, 胡超, 董文斌, 程静峰, 邵珊珊. NTP再生La改性多级孔HZSM-5及催化提质生物油的试验研究[J]. 化工学报, 2019, 70(5): 1795-1803.
[14] 林茂, 李伙生, 张高生, 张平, 龙建友, 肖唐付, 张鸿郭, 熊静芳, 陈永亨. 铁酸镍基水热炭协同次氯酸根氧化去除废水中铊[J]. 化工学报, 2019, 70(4): 1591-1604.
[15] 李艳鹰, 李先春. 生物质活性炭负载零价铁纳米晶簇直接催化还原NO[J]. 化工学报, 2019, 70(3): 1111-1119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁希钢, 余国琮. Computational Mass Transfer Method for Chemical Process Simulation[J]. CIESC Journal, 2008, 16(4): 497 -502 .
[2] 吴志强, 刘志平, 汪文川, 范益群, 徐南平. Diffusion of H2,CO,N2,O2 and CH4 Through Nanoporous Carbon Membranes[J]. CIESC Journal, 2008, 16(5): 709 -714 .
[3] 杜竹玮, 李清海, 佟萌, 李少华, 李浩然. Electricity Generation Using Membrane-less Microbial Fuel Cell during Wastewater Treatment[J]. CIESC Journal, 2008, 16(5): 772 -777 .
[4] 周智勇, 秦炜, 戴猷元. Extraction Equilibria of Trimellitic and[1,1'-Biphenyl]-2,2'-dicarboxylic Acid with 1-Octanol,50% TBP,and 10% TRPO in Kerosene[J]. CIESC Journal, 2008, 16(6): 867 -870 .
[5] 罗淑娟, 李怀志, 费维扬, 王运东. Liquid Film Characteristics on Surface of Structured Packing[J]. CIESC Journal, 2009, 17(1): 47 -52 .
[6] 田文玉, 薛为岚, 曾作祥, 邵记. Kinetics of 2-Methyl-6-acetyl-naphthalene Liquid Phase Catalytic Oxidation[J]. CIESC Journal, 2009, 17(1): 72 -77 .
[7] 陈露, 朱娟, 王箭, 吴海虹, 杨建国. Hydrotalcite-like Materials as Catalyst for the Conjugate Addition of Amines to Electron Deficient Alkenes[J]. CIESC Journal, 2009, 17(5): 875 -878 .
[8] 刘淑延, 柴景春, 杨晓宁. β-Diketones at Water/Supercritical CO2 Interface:A Molecular Dynamics Simulation[J]. CIESC Journal, 2009, 17(6): 990 -998 .
[9] 杨明军, 宋永臣, 刘瑜, 陈拥军, 李清平. Influence of Pore Size,Salinity and Gas Composition upon the Hydrate Formation Conditions[J]. CIESC Journal, 2010, 18(2): 292 -296 .
[10] 陈良, Yinlun Huang. Integrated Product and Process Control for Sustainable Semiconductor Manufacturing[J]. CIESC Journal, 2011, 19(2): 192 -198 .