化工学报 ›› 2019, Vol. 70 ›› Issue (3): 840-849.doi: 10.11949/j.issn.0438-1157.20180926

• 流体力学与传递现象 • 上一篇    下一篇

液氢缩比贮箱蒸发特性数值模拟及实验验证

王舜浩1(),朱文俐2,胡正根2,周芮1,余柳1,王彬1,张小斌1()   

  1. 1. 浙江大学制冷与低温研究所,浙江省制冷及低温重点实验室,浙江 杭州 310027
    2. 北京宇航系统工程研究所,北京 100076
  • 收稿日期:2018-08-14 修回日期:2018-10-19 出版日期:2019-03-05 发布日期:2018-10-25
  • 通讯作者: 张小斌 E-mail:wangshzju@126.com;zhangxbin@zju.edu.cn
  • 作者简介:<named-content content-type="corresp-name">王舜浩</named-content>(1994—),男,博士研究生,<email>wangshzju@126.com</email>|张小斌(1976—),男,博士,教授,<email>zhangxbin@zju.edu.cn</email>

Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank

Shunhao WANG1(),Wenli ZHU2,Zhenggen HU2,Rui ZHOU1,Liu YU1,Bin WANG1,Xiaobin ZHANG1()   

  1. 1. Institution of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2. China Academy of Launch Vehicle Technology, Beijing 100076, China
  • Received:2018-08-14 Revised:2018-10-19 Online:2019-03-05 Published:2018-10-25
  • Contact: Xiaobin ZHANG E-mail:wangshzju@126.com;zhangxbin@zju.edu.cn

摘要:

地面缩比贮箱用来模拟箭载液氢贮箱热物理过程及运行特性,包括筒段和壳段,壳段用于支撑筒段。筒段和部分壳段使用泡沫绝热,壳段结构部分裸露在环境中,成为液氢贮箱的主要漏热源。基于计算流体力学方法数值研究了液氢缩比贮箱蒸发特性,构建了基于VOF两相流模型以及Level-set界面跟踪方法的贮箱两相氢流动和相变传热传质数学框架,其中气液界面传质率基于Lee模型计算。框架中的系数、边界条件等作如下考虑:Lee模型中的液化/蒸发系数通过与实验数据对比获得;通过理论分析低温面有/无泡沫保温层的结冰特性,对暴露在环境的泡沫和铝壳表面施加对流换热或常热流边界条件;当贮箱压力达到约2个大气压(0.2 MPa)时,安全阀打开放气保持内部压力不变,基于自定义函数方法模拟阀门开闭实现控制贮箱压力的目的。与实验测量的液位下降速率和气相温度非稳态变化对比表明,构建的数值模型能够较好地模拟液氢贮箱自增压过程的复杂流动、相变传热传质特性。为模拟真实箭载液氢贮箱停放阶段的热物理过程打下基础。

关键词: 氢, 缩比贮箱, 自增压, 相变, CFD

Abstract:

The ground-scale reduction tank is used to simulate the thermophysical process and operating characteristics of the arrow-loaded hydrogen tank, including the barrel section and the shell section which is used to support the barrel section. The barrel section and part of the shell section are insulated by foam, and the shell section structure is exposed in the environment, which becomes the main heat leakage source of the liquid hydrogen tank. Based on the computational fluid dynamics method, the evaporation characteristics of the liquid hydrogen scaled tank were numerically studied. The mathematical framework of two-phase hydrogen flow and phase change heat and mass transfer was constructed based on VOF two-phase flow model and Level-set interface tracking method. The mass transfer rate of the liquid interface is calculated based on the Lee model. The liquefaction/evaporation coefficient in the Lee model was obtained by comparison with the experimental results. By theoretical analysis of the icing characteristics of the low temperature surface with or without foam insulation, convective heat transfer or constant heat flux boundary conditions were applied to the exposed foam and aluminum shell surfaces respectively. When the tank pressure reached about 2 atm (0.2 MPa, absolute), the safety valve was opened and deflated to keep the internal pressure constant. This paper simulates the valve opening and closing based on the custom function method to achieve the purpose of controlling the tank pressure. Compared with the experimentally measured liquid level decline rate and unsteady gas phase temperature change, the constructed numerical model can well simulate the complex flow and phase change heat and mass transfer characteristics of the self-pressurization process in the liquid hydrogen tank, which contributed to the foundation for simulating the thermophysical process during the launch process of the real rocket-loaded liquid hydrogen tank.

Key words: hydrogen, scaled tank, self-pressurization, phase change, CFD

中图分类号: 

  • TB 661

图1

液氢缩比小箱结构示意图"

图2

无绝热层时结冰过程计算示意图"

图3

无绝热层时结冰表面漏热率随时间的变化"

图4

不同低温时冰层在1000 s的漏热率"

图5

有绝热层时冰厚度随时间的变化"

图6

有绝热层时贮罐壁面漏热随时间的变化"

图7

液氢缩比小箱网格方案及边界条件"

图8

不同模型系数模拟的液位与试验对比"

图9

模拟的气相温度与试验对比"

图10

模拟的贮箱气相空间压力随时间变化"

图11

不同时刻液氢缩比小箱相含量分布"

图12

不同时刻液氢缩比小箱内温度分布"

图13

不同时刻缩比小箱内液氢流线分布"

1 ZhangX B, YaoL, QiuL M, et al. Experimental study on cryogenic moisture uptake in polyurethane foam insulation material[J]. Cryogenics, 2012, 52(12): 810-815.
2 ZhangX B, ChenJ Y, GanZ H, et al. Experimental study of moisture uptake of polyurethane foam subjected to a heat sink below 30 K[J]. Cryogenics, 2014, 59(1): 1-6.
3 胡伟峰, 申麟, 杨建民, 等. 低温推进剂长时间在轨的蒸发量控制技术发展[J]. 导弹与航天运载技术, 2009, 304(6): 28-34.
HuW F, ShenL, YangJ M, et al. Progress of study on transpiration control technology for orbit long-term applied cryogenic propellant[J]. Missles and Space Vehicles, 2009, 304(6): 28-34.
4 MeseroleJ, JonesO, BrennanS, et al. Mixing-induced ullage condensation and fluid destratification[C]// Microgravity Fluid Management Symposium. 1987: 732-737.
5 LinC, HasanM, NylandT. Mixing and transient interface condensation of a liquid hydrogen tank[C]// AIAA. 2013.
6 KassemiM, KartuzovaO. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank[J]. Cryogenics, 2016, 74(15): 138-153.
7 FlachbartR H, HastingsL J, HedayatA, et al. Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J]. Cryogenics, 2007, 48(5): 217-222.
8 KassemiM, KartuzovaO. CFD modeling of the multipurpose hydrogen test bed (MHTB) self-pressurization and spray bar mixing experiments in normal gravity: effect of the accommodation coefficient on the tank pressure[C]// AIAA. 2015.
9 KartuzovaO, KassemiM. Self-Pressurization and spray cooling simulations of the multipurpose hydrogen test bed (MHTB) ground-based experiment[C]// AIAA. 2014.
10 PanzarellaC H, KassemiM. Self-pressurization of large spherical cryogenic tanks in space[J]. Journal of Spacecraft & Rockets, 2012, 42(42): 299-308.
11 KassemiM, KartuzovaO, HyltonS. Validation of two-phase CFD models for propellant tank self-pressurization: crossing fluid types, scales, and gravity levels[J]. Cryogenics, 2018, 89: 1-15.
12 BarsiS, KassemiM. Numerical and experimental comparisons of the self-pressurization behavior of an LH2 tank in normal gravity[J]. Cryogenics, 2008, 48(3): 122-129.
13 PanzarellaC H, KassemiM. On the validity of purely thermodynamic descriptions of two-phase cryogenic fluid storage[J]. Journal of Fluid Mechanics, 2003, 484(484):41-68.
14 BarsiS, KassemiM. A numerical study of tank pressure control in reduced gravity[C]// AIAA. 2013.
15 FuJ, SundenB, ChenX. Influence of wall ribs on the thermal stratification and self-pressurization in a cryogenic liquid tank[J]. Applied Thermal Engineering, 2014, 73(2): 1421-1431.
16 ZhanL, LiY, JinY, et al. Thermodynamic performance of pre-pressurization in a cryogenic tank[J]. Applied Thermal Engineering, 2017, 112: 801-810.
17 WangL, LiY, ZhaoZ, et al. Transient thermal and pressurization performance of LO2 tank during helium pressurization combined with outside aerodynamic heating[J]. International Journal of Heat & Mass Transfer, 2013, 62(1): 263-271.
18 刘展, 孙培杰, 李鹏, 等. 微重力下低温液氧贮箱热分层研究[J]. 低温工程, 2016, 209(1): 25-31.
LiuZ, SunP J, LiP, et al. Research on thermal stratification of cryogenic liquid oxygen tank in microgravity[J]. Cryogeics, 2016, 209(1): 25-31.
19 程向华, 厉彦忠, 陈二锋, 等. 回流口位置对液体火箭液氧贮箱热分层的影响[J]. 航空动力学报, 2009, 24(1): 224-229.
ChengX H, LiY Z, ChenE F, et al. Effect of the return flow locations on the thermal stratification in liquid oxygen tank of rocket[J]. Journal of Aerospace Power, 2009, 24(1): 224-229.
20 王磊, 厉彦忠, 李翠, 等. 液体火箭贮箱增压排液过程温度场数值研究[J]. 航空动力学报, 2011, 26(8): 1893-1899.
WangL, LiY Z, LiC, et al. Numerical study on temperature distribution of tank pressurization process of liquid rocket during outflow[J]. Journal of Aerospace Power, 2011, 26(8): 1893-1899.
21 LeiW, LiY, KangZ, et al. Comparison of three computational models for predicting pressurization characteristics of cryogenic tank during discharge[J]. Cryogenics, 2015, 65: 16-25.
22 ChenL, LiangG Z. Simulation research of vaporization and pressure variation in a cryogenic propellant tank at the launch site[J]. Microgravity Science & Technology, 2013, 25(4):203-211.
23 陈亮, 梁国柱, 魏一, 等. 低温推进剂贮箱压力变化的CFD仿真[J]. 航空动力学报, 2015, 30(6): 1470-1477.
ChenL, LiangG Z, WeiY, et al. CFD simulation of cryogenic propellant tank pressure variation[J]. Journal of Aerospace Power, 2015, 30(6): 1470-1477.
24 李佳超, 梁国柱. 地面及微重力条件下低温贮箱内相变和传热的数值仿真[J]. 空间科学学报, 2016, 36(4):513-519.
LiJ C, LiangG Z. Numerical simulation of phase change and heat transfer in cryogenic tank under the ground and microgravity condition[J]. Chin. J. Space Sci., 2016, 36(4): 513-519.
25 HoS H, RahmanM M. Forced convective mixing in a zero boil-off cryogenic storage tank[J]. International Journal of Hydrogen Energy, 2012, 37(13): 10196-10209.
26 WangL, LiY, LiC, et al. CFD investigation of thermal and pressurization performance in LH2 tank during discharge[J]. Cryogenics, 2013, 57(5): 63-73.
27 MajumdarA, ValenzuelaJ, LeclairA, et al. Numerical modeling of self-pressurization and pressure control by a thermodynamic vent system in a cryogenic tank[J]. Cryogenics, 2016, 74: 113-122.
28 WangB, HuangY, ChenZ, et al. Performance of thermodynamic vent system for cryogenic-propellant storage using different control strategies[J]. Applied Thermal Engineering, 2017, 126: 100-107.
29 马原, 孙培杰, 李鹏, 等. 液氢贮箱微重力喷射降压特性数值模拟研究[J]. 真空与低温, 2018, 209(1): 25-31.
MaY, SunP J, LiP, et al. Numerical investigation on performance of spraying pressure control technique for liquid hydrogen tank at microgravity[J]. Vacuum & Cryogenics, 2018, 209(1): 25-31.
30 黄永华, 陈忠灿, 汪彬, 等. 控制策略对贮箱热力排气系统性能的影响[J]. 化工学报, 2017, 68(12): 4702-4708.
HuangY H, ChenZ C, WangB, et al. Effect of pressure control strategy on performance of thermodynamic vent system for storage tank[J]. CIESC Journal, 2017, 68(12): 4702-4708.
[1] 梅道锋, 赵海波, 晏水平. 基于NiO/Ca2Al2SiO7的沼气自热化学链重整制氢热分析动力学模拟[J]. 化工学报, 2019, 70(S1): 193-201.
[2] 孟繁锐, 李伯阳, 李先春, 邱爽. K2CO3对兰炭催化气化特性的影响[J]. 化工学报, 2019, 70(S1): 99-109.
[3] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[4] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[5] 周麟晨, 孙志高, 陆玲, 王赛, 李娟, 李翠敏. 有机相变乳液中HCFC–141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681.
[6] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[7] 苏武, 石孝刚, 吴迎亚, 高金森, 蓝兴英. 乙炔加氢制乙烯浆态床反应器的CFD模拟[J]. 化工学报, 2019, 70(5): 1858-1867.
[8] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
[9] 卫彩云, 谭静静, 夏晓丽, 赵永祥. 焙烧温度对CuMgAl催化剂催化糠醇加氢制戊二醇的影响[J]. 化工学报, 2019, 70(4): 1409-1419.
[10] 侯莲霞, 袁兆平, 乔鸿昌, 周静红, 周兴贵. Ni-W2C催化葡萄糖氢解制备低碳二元醇反应机理研究[J]. 化工学报, 2019, 70(4): 1390-1400.
[11] 胡凤腾, 姚建龙, 李小青, 李思汉, 严新焕. Sr改性Cu催化剂的果糖加氢制备甘露醇性能[J]. 化工学报, 2019, 70(4): 1420-1428.
[12] 王耀武, 彭建平, 狄跃忠, 蒿鹏程. 铝电解槽干式防渗料在电解过程中的反应机理探讨[J]. 化工学报, 2019, 70(3): 1035-1041.
[13] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[14] 刘小诗, 邹得球, 贺瑞军, 马先锋. 氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性[J]. 化工学报, 2019, 70(3): 1188-1197.
[15] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!