化工学报 ›› 2019, Vol. 70 ›› Issue (3): 857-864.doi: 10.11949/j.issn.0438-1157.20180712

• 流体力学与传递现象 • 上一篇    下一篇

熔盐单罐释热过程换热器取热方式优选

施素丽(),鹿院卫(),于强,吴玉庭   

  1. 北京工业大学环境与能源工程学院,北京 100124
  • 收稿日期:2018-07-02 修回日期:2018-09-21 出版日期:2019-03-05 发布日期:2018-10-25
  • 通讯作者: 鹿院卫 E-mail:1689517645@qq.com;luyuanwei@bjut.edu.cn
  • 作者简介:<named-content content-type="corresp-name">施素丽</named-content>(1992—),女,硕士研究生,<email>1689517645@qq.com</email>|鹿院卫(1971—),女,博士,教授,<email>luyuanwei@bjut.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(51576006);国家重点研发计划项目(2017YFB0903603)

Optimization of heat removal modes for heat exchanger in molten salt single storage tank

Suli SHI(),Yuanwei LU(),Qiang YU,Yuting WU   

  1. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2018-07-02 Revised:2018-09-21 Online:2019-03-05 Published:2018-10-25
  • Contact: Yuanwei LU E-mail:1689517645@qq.com;luyuanwei@bjut.edu.cn

摘要:

盘管释热换热器浸没式布置在熔盐单罐蓄热器内可实现低成本的蓄放热。盘管换热器取热方式会直接影响系统的释热性能。通过数值模拟研究了换热器取热方式对单罐蓄热系统释热性能规律的影响,同时分析了释热过程中熔盐侧流场变化。结果表明,换热器上进下出的取热方式能够提高盘管换热器的出口温度、单罐释热功率及释热效率,研究结果为熔盐单罐蓄放热系统设计提供了理论依据。

关键词: 浸没式换热器, 取热方式, 释热过程, 熔盐单罐, 对流, 传热, 流动

Abstract:

Low cost heat charge and discharge can be realized by immersion arrangement of a helically coiled heat exchanger in molten salt single storage tank. Heat removal modes of the helically coiled heat exchanger will directly affect the heat discharge process of the storage system. Simulations were performed for two heat removal modes which include upper-lower path and lower-upper path. For different heat removal modes in the heat discharge process, the law of heat discharge performance of the molten salt single storage tank is given, and the change of flow field of molten salt side is analyzed. The results show that upper-lower path for the helically coiled heat exchanger can improve the transient out temperature, transient heat transfer rate and heat discharge efficiency. The research results provide a theoretical basis for the design of the molten salt single tank heat storage and discharge system.

Key words: immersed heat exchanger, heat removal mode, heat discharge process, molten salt single tank, convection, heat transfer, flow

中图分类号: 

  • TK 124

图1

模型原理示意图"

图2

罐内熔盐子区域"

图3

网格划分结果"

图4

数值模拟结果与实验结果对比"

图5

不同取热方式下盘管换热器出口温度比较"

图6

不同取热方式下单罐释热功率比较"

图7

不同取热方式下单罐释热效率比较"

图8

单罐内熔盐温度分布 (V inlet = 25 m/s)"

图9

单罐温度分布云图/K"

图10

换热器周围熔盐流速"

1 崔锡民, 鹿院卫, 吴玉庭, 等 . 温度分层对小型熔盐单罐释热过程影响[J]. 化工学报, 2017, 69(6): 2410-2416.
Cui X M , Lu Y W , Wu Y T , et al . Influence of thermal stratification on discharging process of molten salt in small single thermal storage tank[J]. CIESC Journal, 2017, 69(6): 2410-2416.
2 孙晓丽, 鹿院卫, 崔锡民, 等 . 单罐熔融盐释热传热规律实验研究[J]. 太阳能学报, 2018, 39(1): 8-13.
Sun X L , Lu Y W , Cui X M , et al . Heat discharge research of molten salt in single energy storage tank[J]. Acta Energiae Solaris Sinica, 2018, 39(1):8-13.
3 吴玉庭, 张晓明, 马重芳, 等 . 一种带有中间蒸发器的熔盐蓄热式电加热集中供暖系统: 106369655A[P]. 2017-02-01.
Wu Y T , Zhang X M , Ma C F , et al . A central heating system with intermediate evaporator using molten salt for thermal storage by electric heating: 106369655A[P]. 2017-02-01.
4 马重芳, 吴玉庭, 任楠, 等 . 熔盐蓄热式电加热集中供暖系统: 103836703A[P]. 2014-06-04.
Ma C F , Wu Y T , Ren N , et al . Central heating system using molten salt for thermal storage by electric heating: 103836703A[P]. 2014-06-04.
5 鹿院卫, 吴玉庭, 杜文彬, 等 . 一种单罐电能蓄能装置: 203771692U[P]. 2014-08-13.
Lu Y W , Wu Y T , Du W B , et al . A device of single electric energy storage tank: 203771692U[P]. 2014-08-13.
6 鹿院卫, 吴玉庭, 杜文彬, 等 . 一种单罐电能蓄能装置及其使用方法: 103836795A[P].2014-06-04.
Lu Y W , Wu Y T , Du W B , et al . A device of single electric energy storage tank and its using method: 103836795A[P]. 2014-06-04.
7 鹿院卫, 吴玉庭, 孙晓丽, 等 . 一种单罐蓄能装置及其使用方法: 103940119A[P]. 2014-07-23.
Lu Y W , Wu Y T , Sun X L , et al . A device of single thermal energy storage tank and its using method: 103940119A[P]. 2014-07-23.
8 Brosseau D , Kelton J W , Ray D , et al .Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2005, 127(2): 109-116.
9 Bradshaw R W , Dawson D B , Wolredo D L R , et al . Final test and evaluation results from the solar two project[J]. Energy Storage, 2002, 65(5): 162-168.
10 Gabbrielli R , Zamparelli C . Optimal design of a molten salt thermal storage tank for parabolic trough solar power plants[J]. Journal of Solar Energy Engineering, 2009, 131(4): 041001-041011.
11 Herrmann U , Kelly B , Price H . Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy, 2004, 29(5): 883-893.
12 Flueckiger S , Zhen Y , Garimella S . Review of molten-salt thermocline tank modeling for solar thermal energy storage[J]. Heat Transfer Engineering, 2013, 34(10): 787-800.
13 孙晓丽, 鹿院卫, 崔锡民, 等 . 熔融盐单罐储热系统释热传热规律研究[J]. 工程热物理学报, 2016, V37(5): 1032-1037.
Sun X L , Lu Y W , Cui X M , et al . Heat discharge research of molten salt in single energy storage tank[J]. Journal of Engineering Thermophysics, 2016, V37(5): 1032-1037.
14 Haltiwanger J , Davidson J H . Discharge of a thermal storage tank using an immersed heat exchanger with an annular baffle[J]. Solar Energy, 2009, 83(5): 193-201.
15 Liu W , Davidson J H , Mantell S C . et al . Natural convection from a horizontal tube heat exchanger immersed in a tilted enclosure[J]. ASME Journal of Solar Energy, 2003, 125(1): 67-75.
16 Liu W , Davidson J H , Kulacki F A . Natural convection from a tube bundle in a thin inclined enclosure[J]. ASME Journal of Solar Energy, 2004, 126(2): 702–709.
17 Liu W , Davidson J H , Kulacki F A . Thermal characterization of prototypical integral collector storage systems with immersed heat exchangers[J]. ASME Journal of Solar Energy, 2005, 127(1): 21-28.
18 Yan S , Davidson J H . Transient natural convection heat transfer correlations for tube bundles immersed in a thermal storage[J]. ASME Journal of Solar Energy, 2007, 129(2): 210–214.
19 Yan S , Davidson J H . Multi-zone porous medium model of the thermal and fluid processes during discharge of an inclined rectangular storage vessel via an immersed tube bundle[J]. ASME Journal of Solar Energy, 2007, 129(4): 449–457.
20 孙晓丽 . 单罐熔融盐蓄热与释热传热规律研究[D]. 北京: 北京工业大学, 2016.
Sun X L . Study on charging and discharging process of molten salt in single thermal energy storage tank[D]. Beijing: Beijing University of Technology, 2016.
21 Yan S , Davidson J H . Multi-zone porous medium model of the thermal and fluid processes during discharge of an inclined rectangular storage vessel via an immersed tube bundle[J]. ASME Journal of Solar Energy, 2007, 129(4): 449–457.
22 Li S , Zhang Y , Zhang K , et al . Study on performance of storage tanks in solar water heater system in charge and discharge progress[J]. Energy Procedia, 2014, 48(48): 384-393.
23 Prabhanjan D G , Rennie T J , Raghavan G S V . Natural convection heat transfer from helical coiled tubes[J]. International Journal of Thermal Sciences, 2004, 43(4): 359-365.
24 Wu Y T , Li Y , Lu Y W , et al . Novel low melting point binary nitrates for thermal energy storage applications[J]. Solar Energy Materials & Solar Cells, 2017, 164(10): 114–121.
25 李英 . 低熔点二元混合熔盐传热蓄热介质的制备及热物性研究[D].北京: 北京工业大学, 2017.
Li Y . Study of preparation and thermophysical properties of the low melting point binary mixed molten salts for heat transfer and storage[D]. Beijing: Beijing University of Technology, 2017.
26 李英, 吴玉庭, 鹿院卫, 等 . 二元混合硝酸盐相图的预测及热物性实验研究[J]. 太阳能学报, 2018, 39(2): 435-440.
Li Y , Wu Y T , Lu Y W , et al . Study of thermophysical properties and phase diagram prediction of binary mixed molten salts[J].Acta Energiae Solaris Sinica, 2018, 39(2): 435-440.
27 李鹏飞, 徐敏义, 王飞飞 . 精通CFD工程仿真与案例实战[M]. 北京:人民邮电出版社, 2011.
Li P F , Xu M Y , Wang F F . Proficient in CFD Engineering Simulation and Case Study[M]. Beijing:People Post and Telecommunications Publishing House, 2011.
28 甘雪菲, 何正斌, 伊松林, 等 . 石蜡相变储热系统的放热效率[J]. 农业工程学报, 2012, 28(2): 222-225.
Gan X F , He Z B , Yi W S , et al . Discharging efficiency of paraffin phase change heat storage system[J]. Transactions of the CSAE, 2012, 28(2): 222-225.
29 中华人民共和国住房和城乡建设部 . 城市供热规划规范: GBT51074—2015[S]. 北京: 中国建筑工业出版社, 2015.
Ministry of Housing and Urban-Rural Development of the People's Republic of China . Code for urban heating supply planning: GBT51074—2015[S]. Beijing: China Architecture & Building Press, 2015.
30 Nicodemus J H , Jeffrey J , Haase J , et al . Effect of baffle and shroud designs on discharge of a thermal storage tank using an immersed heat exchanger[J]. Solar Energy, 2017, 157(15): 911-919.
[1] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[2] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
[3] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[4] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[5] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[6] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[7] 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
[8] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
[9] 杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772-1778.
[10] 柴叶霞, 陈华艳, 贾悦, 李丹丹, 武春瑞, 吕晓龙. PVDF中空纤维换热管超疏水表面强化蒸气滴状冷凝传热[J]. 化工学报, 2019, 70(4): 1331-1339.
[11] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[12] 陈曦, 林毅, 邵帅. 倾角及加热功率对乙烷脉动热管传热性能的影响[J]. 化工学报, 2019, 70(4): 1383-1389.
[13] 朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290.
[14] 朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357.
[15] 生丽莎, 陈振乾. 静电辅助多孔液体的制备及特性研究[J]. 化工学报, 2019, 70(3): 1163-1170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .