化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4713-4721.doi: 10.11949/j.issn.0438-1157.20180532

• 催化、动力学与反应器 • 上一篇    下一篇

Cu/Al2O3催化剂用于H2O2分解生成羟基自由基的效率

田鹏飞1, 盛依依1, 孙杨1, 丁豆豆1, 徐晶1, 韩一帆1,2   

  1. 1. 化学工程联合国家重点实验室, 华东理工大学, 上海 200237;
    2. 郑州大学化工与能源学院, 河南 郑州 450001
  • 收稿日期:2018-05-22 修回日期:2018-08-09 出版日期:2018-11-05
  • 通讯作者: 徐晶 E-mail:xujing@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(21808057,91534127);国家重点研发计划项目(2018YFB0604500)。

Formation efficiency of hydroxyl radical from H2O2 decomposition over Cu/Al2O3 catalyst

TIAN Pengfei1, SHENG Yiyi1, SUN Yang1, DING Doudou1, XU Jing1, HAN Yifan1,2   

  1. 1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
    2. Research Center of Heterogeneous Catalysis and Engineering Sciences, School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2018-05-22 Revised:2018-08-09 Online:2018-11-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21808057, 91534127) and the National Key R&D Program of China (2018YFB0604500).

摘要:

非均相Fenton催化反应是降解废水中有机污染物的有效方法。提高H2O2分解生成羟基自由基(·OH)的利用率是提升废水处理效率、降低成本的关键。使用溶胶-凝胶法制备了Cu/Al2O3催化剂,基于·OH的生成效率,通过单因素实验发现反应温度、反应溶液pH及H2O2初始浓度是决定H2O2利用率的主要因素。通过响应面法进行实验设计,分析响应面方程,考察了H2O2初始浓度、溶液pH及反应温度三个因素之间的交互作用及其对反应过程的影响。以H2O2利用率的最大化为目标优化反应条件,当H2O2初始浓度、溶液pH及反应温度分别为707 mg·L-1、5.12及59.4℃时,H2O2利用率可高达0.57,与实验结果相对误差仅为3.5%。所得结果对降低废水处理成本、提高降解效率具有重要的指导作用。

关键词: Fenton反应, 废水, 催化剂, 响应面法, 双氧水利用率, 自由基

Abstract:

Heterogeneous Fenton reaction is an effective method for the degradation of organic pollutants in the waste water. The improvement of H2O2 utilization efficiency for hydroxyl (·OH) production is the primary challenge to enhance the efficiency and reduce the cost for waste water degradation. Cu/Al2O3 catalysts were prepared through a sol-gel method. Based on the formation efficiency of ·OH, the reaction temperature, the pH of the reaction solution and the initial concentration of H2O2 were the main factors determining the utilization of H2O2 by single factor experiments. Through the design of experiments via response surface methodology and the analysis of the regression equation, the influence of three independent variables, initial H2O2 concentration, pH and reaction temperature, and their interactions on H2O2 utilization efficiency was evaluated. To achieve the highest H2O2 utilization efficiency, the optimum parameters were determined as 707 mg·L-1 of H2O2 initial concentration, 5.12 of pH and 59.4℃ of reaction temperature. The corresponding H2O2 utilization efficiency is 0.57 and the relative error is only 3.5% compared with experimental value, suggesting that response surface methodology can provide important guidance on reducing cost and improving efficiency for waste water treatment.

Key words: Fenton reaction, waste water, catalyst, response surface methodology, hydrogenperoxide utilization efficiency, radical

中图分类号: 

  • O643.3

[1] HU Y, CHENG H. Water pollution during China's industrial transition[J]. Environmental Development, 2013, 8:57-73.
[2] HUANG C, DONG C, TANG Z. Advanced chemical oxidation:its present role and potential future in hazardous waste treatment[J]. Waste Management, 1993, 13(5):361-377.
[3] Kuznetsova E V, Savinov E N, Vostrikova L A, et al. Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2[J]. Applied Catalysis B Environmental, 2004, 51(3):165-170.
[4] Hermanek M, Zboril R, Medrik I, et al. Catalytic efficiency of iron(Ⅲ) oxides in decomposition of hydrogen peroxide:  competition between the surface area and crystallinity of nanoparticles[J]. Journal of the American Chemical Society, 2007, 129(35):10929-10936.
[5] Pouran S R, Aziz A, Wan M, et al. Estimation of the effect of catalyst physical characteristics on Fenton-like oxidation efficiency using adaptive neuro-fuzzy computing technique[J]. Measurement, 2015, 59:314-328.
[6] He J, Ma W, He J, et al. Photooxidation of azo dye in aqueous dispersions of H2O2/α-FeOOH[J]. Applied Catalysis B Environmental, 2002, 39(3):211-220.
[7] Zhong X, Royer S, Zhang H, et al. Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono-photo-Fenton process[J]. Separation & Purification Technology, 2011, 80(1):163-171.
[8] Yang X J, Xu X M, Xu J, et al. Iron oxychloride (FeOCl):an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J]. Journal of the American Chemical Society, 2013, 135:16058-16061.
[9] Yang X J, Tian P F, Zhang X M, et al. The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15 catalysts for phenol degradation[J]. AIChE Journal, 2015, 61:166-176.
[10] Bokare A D, Choi W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275:121-135.
[11] Zhang L, Xu D, Hu C, et al. Framework Cu-doped AlPO4 as an effective Fenton-like catalyst for bisphenol A degradation[J]. Applied Catalysis B:Environmental, 2017, 207:9-16.
[12] Granato T, Katovic A, Valkaj K M, et al. Cu-silicalite-1 catalyst for the wet hydrogen peroxide oxidation of phenol[J]. Journal of Porous Materials, 2009, 16(2):227-232.
[13] Guzman-Vargas A, de la Rosa-Pineda J E, Oliver-Tolentino M A, et al. Stability of Cu species and zeolite structure on ecological heterogeneous Fenton discoloration-degradation of yellow 5 dye:efficiency on reusable Cu-Y catalysts[J]. Environmental Progress & Sustainable Energy, 2015, 34(4):990-998.
[14] Pan W, Zhang G, Zheng T, et al. Degradation of p-nitrophenol using CuO/Al2O3 as a Fenton-like catalyst under microwave irradiation[J]. RSC Advances, 2015, 5(34):27043-27051.
[15] Subbaramaiah V, Srivastava V C, Mall I D. Catalytic activity of Cu/SBA-15 for peroxidation of pyridine bearing wastewater at atmospheric condition[J]. AIChE Journal, 2013, 59(7):2577-2586.
[16] Taran O P, Zagoruiko A N, Ayusheev A B, et al. Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor. Kinetics and diffusion study[J]. Chemical Engineering Journal, 2015, 282:108-115.
[17] Björkbacka Å, Yang M, Gasparrini C, et al. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides[J]. Dalton Transactions, 2015, 44(36):16045-16051.
[18] Lyu L, Zhang L, Hu C. Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres[J]. Chemical Engineering Journal, 2015, 274:298-306.
[19] Lyu L, Zhang L, Hu C, et al. Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminum-silica nanospheres for water purification[J]. Journal of Materials Chemistry A, 2016, 4(22):8610-8619.
[20] Lyu L, Zhang L, Wang Q, et al. Enhanced Fenton catalytic efficiency of γ-Cu-Al2O3 by σ-Cu2+-ligand complexes from aromatic pollutant degradation[J]. Environmental Science & Technology, 2015, 49(14):8639-8647.
[21] Wang H, Zhang L, Hu C, et al. Enhanced degradation of organic pollutants over Cu-doped LaAlO3 perovskite through heterogeneous Fenton-like reactions[J]. Chemical Engineering Journal, 2018, 332:572-581.
[22] Zhang Y, Liu C, Xu B, et al. Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2:combination of adsorption and catalysis oxidation[J]. Applied Catalysis B:Environmental, 2016, 199:447-457.
[23] Sheng Y Y, Sun Y, Xu J, et al. Fenton-like degradation of rhodamine B over highly durable Cu-embedded alumina:kinetics and mechanism[J]. AIChE Journal, 2018, 64:538-549.
[24] Zhang X, Ding Y, Tang H, et al. Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst:efficiency, stability and mechanism[J]. Chemical Engineering Journal, 2014, 236:251-262.
[25] Lai L, Zhang L, Hu C, et al. Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminum-silica nanospheres for water purification[J]. Journal of Materials Chemistry A, 2016, 4(22):8610-8619.
[26] Fu L, Li X, Liu M, et al. Insights into the nature of Cu doping in amorphous mesoporous alumina[J]. Journal of Materials Chemistry A, 2013, 1(46):14592-14605.
[27] Eisenberg G. Colorimetric determination of hydrogen peroxide[J]. Industrial & Engineering Chemistry Analytical Edition, 1943, 15(5):327-328.
[28] Lindsey M E, Tarr M A. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide[J]. Chemosphere, 2000, 41(3):409-417.
[29] Jensen M C R, Venkataramani K, Helveg S, et al. Morphology, dispersion, and stability of Cu nanoclusters on clean and hydroxylated α-Al2O3(0001) substrates[J]. The Journal of Physical Chemistry C, 2008, 112(43):16953-16960.
[30] TIAN P F, OUYANG L K, XU X Y, et al. The origin of palladium particle size effects in the direct synthesis of H2O2:is smaller better?[J]. Journal of Catalysis, 2017, 349:30-40.
[31] 张国臣. 过氧化氢生产技术[M]. 北京:化学工业出版社, 2012:54-72. ZHANG G C. Production Technology of H2O2[M]. Beijing:Chemical Industry Press, 2012:54-72.
[32] GOOR G, GLENNEBERG J, JACOBI S. Hydrogen Peroxide[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2007:396-397
[33] Yang X j, Xu X m, Xu X c, et al. Modeling and kinetics study of Bisphenol A (BPA) degradation over an FeOCl/SiO2 Fenton-like catalyst[J]. Catalysis Today, 2016, 276:85-96.
[34] Arslan-Alaton I, Tureli G, Olmez-Hanci T. Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes:optimization by response surface methodology[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2009, 202(2):142-153.
[35] Wu Y, Zhou S, Qin F, et al. Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM)[J]. Journal of Hazardous Materials, 2010, 180(1):456-465.
[36] Mitsika E E, Christophoridis C, Fytianos K. Fenton and Fenton-like oxidation of pesticide acetamiprid in water samples:kinetic study of the degradation and optimization using response surface methodology[J]. Chemosphere, 2013, 93(9):1818-1825.
[37] Cruz-González K, Torres-López O, García-León A, et al. Determination of optimum operating parameters for acid yellow 36 decolorization by electro-Fenton process using BDD cathode[J]. Chemical Engineering Journal, 2010, 160(1):199-206.
[38] Li H, Gong Y, Huang Q, et al. Degradation of orange Ⅱ by UV-assisted advanced Fenton process:response surface approach, degradation pathway, and biodegradability[J]. Industrial & Engineering Chemistry Research, 2013, 52(44):15560-15567.
[39] Zhu X, Tian J, Liu R, et al. Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology[J]. Separation and Purification Technology, 2011, 81(3):444-450.
[40] 王欣, 王金翠, 殷晓梅, 等. 乙酰甲胺磷UV-TiO2/类Fenton光催化降解过程的响应面法优化[J]. 应用化工, 2013, 42(1):33-40. WANG X, WANG J C, YIN X M, et al. Optimization of photocatalytic degradation of acephate by UV-TiO2/Fenton-like process using response surface methodology[J]. Applied Chemical Industry, 2013, 42(1):33-40.
[41] Zhang P, Yuan S, Liao P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions[J]. Geochimicaet Cosmochimica Acta, 2016, 172:444-457.
[42] He J, Yang X, Men B, et al. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials:a review[J]. Journal of Environmental Sciences, 2016, 39:97-109.

[1] 侯莲霞, 袁兆平, 乔鸿昌, 周静红, 周兴贵. Ni-W2C催化葡萄糖氢解制备低碳二元醇反应机理研究[J]. 化工学报, 2019, 70(4): 1390-1400.
[2] 于海斌, 刘强, 周立坤, 陈赞, 罗超, 张贯艳, 乔利娜, 王建杰. MnOx/ZrO2催化剂制备及催化臭氧氧化降解甲基橙[J]. 化工学报, 2019, 70(4): 1436-1445.
[3] 胡凤腾, 姚建龙, 李小青, 李思汉, 严新焕. Sr改性Cu催化剂的果糖加氢制备甘露醇性能[J]. 化工学报, 2019, 70(4): 1420-1428.
[4] 宋宇淙, 丁晓墅, 闫亚辉, 王淑芳, 王延吉. 氧化石墨烯复合金属催化剂催化碳酸二甲酯合成反应性能[J]. 化工学报, 2019, 70(4): 1401-1408.
[5] 王鑫博, 张延平, 李秀萍, 赵荣祥. EMIES/nC9H10O2基低共熔溶剂的制备及其氧化脱硫活性的研究[J]. 化工学报, 2019, 70(4): 1567-1574.
[6] 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435.
[7] 赫帅, 郭凤, 康国俊, 余剑, 任雪峰, 许光文. 络合-溶剂热法制备钯基催化剂及其催化氧化间二甲苯性能[J]. 化工学报, 2019, 70(3): 937-943.
[8] 唐铨, 郭杨龙, 詹望成, 郭耘, 王丽, 王筠松. 用于丙烷催化燃烧的PdxPty-ZSM-5/Cordierite整体式催化剂[J]. 化工学报, 2019, 70(3): 944-950.
[9] 王超, 李长明, 皇甫林, 李萍, 杨运泉, 高士秋, 余剑, 许光文. 赤泥催化剂的制备及其对模拟烟气中微量氨的脱除性能[J]. 化工学报, 2019, 70(3): 1056-1064.
[10] 李艳鹰, 李先春. 生物质活性炭负载零价铁纳米晶簇直接催化还原NO[J]. 化工学报, 2019, 70(3): 1111-1119.
[11] 梁天水, 王宗莹, 高坤, 李润婉, 王铮, 钟委, 赵军. 基于cup burner的含铁基添加剂超细水雾灭火有效性分析[J]. 化工学报, 2019, 70(3): 1236-1242.
[12] 郭婉婉, 李如月, 黄军. 交联菲罗啉负载铜催化剂用于合成三甲基苯醌[J]. 化工学报, 2019, 70(3): 929-936.
[13] 李德生, 张超, 邓时海, 胡智丰, 李金龙, 刘元辉. 基于铁基质高效催化还原污水中硝酸盐氮的实验研究[J]. 化工学报, 2019, 70(3): 1065-1074.
[14] 张兰河, 张明爽, 郭静波, 贾艳萍, 李正, 陈子成. Fe3+在A2O工艺缺氧区的转化规律及其对污泥絮凝性的影响[J]. 化工学报, 2019, 70(3): 1089-1098.
[15] 王婵娜, 刘令, 王慧华, 屈天鹏, 田俊, 王德永, 康振辉. Co-Fe-Pd纳米粒子的可控制备及其氧还原催化性能[J]. 化工学报, 2019, 70(1): 319-326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!