化工学报 ›› 2016, Vol. 67 ›› Issue (6): 2284-2290.doi: 10.11949/j.issn.0438-1157.20151954

• 流体力学与传递现象 • 上一篇    下一篇

基于超声波阻抗谱的颗粒粒径表征方法

纪晓明, 苏明旭, 汪雪, 蔡小舒   

  1. 上海理工大学颗粒与两相流测量研究所, 上海市动力工程多相流动与传热重点实验室, 上海 200093
  • 收稿日期:2015-12-23 修回日期:2016-03-16 出版日期:2016-06-05 发布日期:2016-03-17
  • 通讯作者: 苏明旭 E-mail:sumx@usst.edu.cn
  • 基金资助:

    国家自然科学基金项目(51176128,5120611)。

Particle size characterization based on ultrasonic impedance spectrum

JI Xiaoming, SU Mingxu, WANG Xue, CAI Xiaoshu   

  1. Institute of Particle and Two-phase Flow Measurement, Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2015-12-23 Revised:2016-03-16 Online:2016-06-05 Published:2016-03-17
  • Supported by:

    supported by the National Natural Science Foundation of China (51176128,5120611).

摘要:

研究超声反射波谱与颗粒粒径及浓度之间的关系并发展一种基于超声波阻抗谱的颗粒粒径表征方法。对超声波波动理论模型适当变形,建立超声阻抗谱与颗粒粒径及浓度之间的关系;进一步通过数值模拟分析超声阻抗谱对颗粒浓度及粒径变化的敏感性;实验中使用中心频率10~100MHz超声波换能器,利用自发自收模式对超声波在缓冲层与介质界面上的反射波信号进行测量并分析,对体积中位径分别为7.69、21.58、66.64mm的聚苯乙烯悬浮液进行实验,获得阻抗谱并与数值模拟结果对比,根据实验阻抗谱进行数据反演获得样品颗粒粒度分布,并与图像分析结果进行了对比,结果显示,本方法可有效分辨3种颗粒样品的粒径。

关键词: 超声阻抗谱, 聚苯乙烯悬浮液, 粒度分布, 浓度, 测量, 数值模拟, 反演

Abstract:

The purpose of this paper is to explore the relationship between the characteristics of particles and ultrasonic impedance spectra. Although the ultrasonic attenuation and velocity spectra methods are becoming the sophisticated technology for particle size characterization, they are not available in some actual projects, either because the particulate matters to be investigated are too dense or because there are some bubbles inside. However, ultrasonic impedance spectra technology emerges as a potential technique to provide a non-destructively detecting way in the aforementioned occasions. By modifying the ultrasonic attenuation spectral model, the theories related the ultrasonic impedance spectra to particle concentration and size are established to implement quite a few numerical simulations, showing that the acoustic impedances of particles is sensitive to the changes in particle concentration and size. After that, three kinds of polystyrene suspensions with different volume median diameters (7.69 mm, 21.58 mm and 66.64 mm) are investigated experimentally using the transducers with center frequencies varied from 10 MHz to 100 MHz. The results are quantitatively validated by the theory whereby a conclusion can be yielded that it is possible to distinguish the particles with different sizes by using ultrasonic impedance spectra. The comparison of the inversion results and image analysis indicates that the impedance technique is available to particle size characterization.

Key words: ultrasonic impedance spectra, polystyrene suspensions, particle size distribution, concentration, measurement, numerical simulation, inversion

中图分类号: 

  • TB52

[1] WANG X Z, LIU L D, LI R F, et al. Online characterisation of nanoparticle suspensions using dynamic light scattering, ultrasound spectroscopy and process tomography [J].Chemical Engineering Research and Design, 2009, 87(6): 874-884.
[2] SU M X, XU F, C X S, et al. Optimization of regularization parameter of inversion in particle sizing using light extinction method [J]. Particuology, 2007, 5(4): 295-299.
[3] BLAISOT J B, YON J. Droplet size and morphology characterization for dense sprays by image processing: application to the Diesel spray [J].Exp. Fluids, 2005, 39(6): 977-994.
[4] CHEN X Z, ZHOU W, CAI X S, et al. In-line imaging measurements of particle size, velocity and concentration in a particulate two-phase flow [J].Particuology, 2014, 13: 106-113.
[5] 成林虎, 蔡小舒, 周骛. 基于颗粒离焦模糊影像梯度算法的颗粒粒径测量方法[J]. 化工学报, 2012, 63(12): 3832-3838. CHENG L H, CAI X S, ZHOU W . Particle sizing from defocus image of spherical particles by image transition region gradient method [J].CIESC Journal, 2012, 63(12): 3832-3838.
[6] 刘海龙, 陈孝震, 蔡小舒, 等. 基于轨迹图像的气液旋风分离器液滴粒度、浓度、速度的在线测量[J].化工学报, 2012, 63(6): 1729-1734. LIU H L, CHEN X Z, CAI X S, et al. In-line measurement of size, concentration and velocity of drops from gas-liquid cyclone separator based on trajectory image processing[J]. CIESC Journal, 2012, 63(6): 1729-1734.
[7] Measurement and characterization of particles by acoustic methods(Ⅰ): Concepts and procedures in ultrasonic attenuation spectroscopy: ISO 20998-1-2006 [S].
[8] EPSTEIN P S, CARHART R R. The absorption of sound in suspensions and emulsions(Ⅰ): Water fog in air [J].The Journal of the Acoustical Society of America, 1953, 25(3): 553-565.
[9] ALLEGRA J R, HAWLEY S A. Attenuation of sound in suspensions and emulsions: theory and experiments [J].The Journal of the Acoustical Society of America, 1972, 51(5B): 1545-1564.
[10] SU M X, CAI X S, XUE M H, et al. Particle sizing in dense two-phase droplet systems by ultrasonic attenuation and velocity spectra [J].Sci. China Ser. E-Technol. Sci., 2009, 52(6): 1502-1510.
[11] 呼剑, 苏明旭, 蔡小舒, 等. 高频宽带超声衰减谱表征纳米颗粒粒度的方法[J].化工学报, 2010, 61(11): 2985-2991. HU J, SU M X, CAI X S, et al. Broad-band high-frequency ultrasonic attenuation spectrum method for measuring nanoparticle size distribution[J]. CIESC Journal, 2010, 61(11): 2985-2991.
[12] KULMYRZAEV A, CANCELLIERE C, MCCLEMENTS D J. Characterization of aerated foods using ultrasonic reflectance spectroscopy [J].Journal of Food Engineering, 2000, 46(4): 235-241.
[13] KULMYRZAEV A, MCCLEMENTS D J. High frequency dynamic shear rheology of honey [J].Journal of Food Engineering, 2000, 45(4): 219-224.
[14] KASOLANG S, AHMAD M A, DWYER J R S. Measurement of circumferential viscosity profile in stationary journal bearing by shear ultrasonic reflection [J].Tribology International, 2011, 44(11): 1264-1270.
[15] DUKHIN A S, GOETZ P J. Fundamentals of interface and colloid science [M]//Studies in Interface Science. Amsterdam: Elsevier, 2002: 17-73.
[16] 章维, 苏明旭, 蔡小舒. 基于超声衰减谱和相速度的颗粒粒径测量[J].化工学报, 2014, 65(3): 898-904. ZHANG W, SU M X, CAI X S. Particle size distribution measurement based on ultrasonic attenuation and phase velocity spectrum [J]. CIESC Journal, 2014, 65(3): 898-904.
[17] HAY A E, SCHAAFSMA A S. Resonance scattering in suspensions [J].The Journal of the Acoustical Society of America, 1989, 85(3): 1124-1138.
[18] MCCLEMENTS D J, FAIRLEY P. Ultrasonic pulse echo reflectometer [J].Ultrasonics, 1991, 29(1): 58-62.
[19] MCCLEMENTS D J, FAIRLEY P. Frequency scanning ultrasonic pulse echo reflectometer [J]. Ultrasonics, 1992, 30(6): 403-405.
[20] ELIÇABE G E, GARCÍA R, LUIS H. Latex particle size distribution from turbidimetry using inversion techniques [J].Journal of Colloid and Interface Science, 1989, 129(1): 192-200.

[1] 刘红, 何阳, 蔡畅, 高久良, 尹洪超. 乙醇和正丁醇添加剂对喷雾冷却的影响[J]. 化工学报, 2019, 70(1): 65-71.
[2] 熊攀, 鄢曙光, 刘玮寅. 基于响应曲面法的旋风分离器结构优化[J]. 化工学报, 2019, 70(1): 154-160.
[3] 耿宸, 郭亚军, 冯松, 毕勤成. 随机温度信号互相关法测量吸热型碳氢燃料密度[J]. 化工学报, 2019, 70(1): 24-31.
[4] 郑立刚, 朱小超, 于水军, 王亚磊, 李刚, 杜德朋, 窦增果, 苏洋. 浓度和点火位置对氢气-空气预混气爆燃特性影响[J]. 化工学报, 2019, 70(1): 408-416.
[5] 李静岩, 刘中良, 周宇, 李艳霞. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82.
[6] 孙星, 徐可可, 孟华. 超临界压力正癸烷在螺旋管中传热与裂解吸热现象的数值模拟[J]. 化工学报, 2018, 69(S1): 20-25.
[7] 李斌, 张尚彬, 张磊, 滕昭钰, 王佑天. 基于LBM-DEM的鼓泡床内气泡-颗粒动力学数值模拟[J]. 化工学报, 2018, 69(9): 3843-3850.
[8] 刘芳琪, 于敦喜, 吴建群, 雷煜, 温昶, 徐明厚. 燃煤锅炉SCR对颗粒物排放特性影响[J]. 化工学报, 2018, 69(9): 4051-4057.
[9] 郑立刚, 王亚磊, 于水军, 朱小超, 李刚, 杜德朋, 窦增果. NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析[J]. 化工学报, 2018, 69(9): 4129-4136.
[10] 李玮豪, 张小松. 无霜空气源热泵系统夏季运行性能初步实验[J]. 化工学报, 2018, 69(9): 3975-3982.
[11] 陈子丹, 罗会龙, 刘锦春, 曹振国, 赵新帅, 杨武彪. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036.
[12] 刘燕, 夏天天, 孙位仕, 万印华, 沈飞, 邓会宁. 电渗析-真空膜蒸馏集成膜法回收离子液体[J]. 化工学报, 2018, 69(9): 3905-3913.
[13] 张颖, 张诗, 何茂刚. 数字全息干涉法测量二元溶液互扩散系数[J]. 化工学报, 2018, 69(9): 3774-3782.
[14] 刘冰冰, 王明雨, 高洪涛, 张少君. 高气液密度比的传热相变复合模型[J]. 化工学报, 2018, 69(8): 3418-3427.
[15] 孙子文, 陈岱琳, 钟文琪, Aibing Yu. 快速流化床颗粒团絮特征的MP-PIC数值模拟[J]. 化工学报, 2018, 69(8): 3443-3451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!