化工学报 ›› 2016, Vol. 67 ›› Issue (2): 469-475.doi: 10.11949/j.issn.0438-1157.20151273

• 流体力学与传递现象 • 上一篇    下一篇

微通道内纳米颗粒对液滴聚并的影响规律

王凯, 易诗婷, 周倩倩, 骆广生   

  1. 清华大学化学工程联合国家重点实验室, 北京 100084
  • 收稿日期:2015-08-07 修回日期:2015-09-16 出版日期:2016-02-05 发布日期:2015-10-15
  • 通讯作者: 王凯 E-mail:kaiwang@tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(91334201,U1302271);全国优秀博士学位论文作者专项资金项目(FANEDD201349);化学工程联合国家重点实验室自主课题(SKL-ChE-12T02)。

Effect of nano-particles on droplet coalescence in microchannel device

WANG Kai, YI Shiting, ZHOU Qianqian, LUO Guangsheng   

  1. State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2015-08-07 Revised:2015-09-16 Online:2016-02-05 Published:2015-10-15
  • Supported by:

    supported by the National Natural Science Foundation of China (91334201, U1302271), the Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD 201349) and the State Key Laboratory of Chemical Engineering (SKL-ChE-12T02).

摘要:

Pickering 乳液是纳米颗粒稳定的液液两相体系,微流控技术是制备单分散Pickering 乳液的有效方法,而含有纳米颗粒体系在微通道内的液滴聚并规律是该实施方法的关键科学问题之一。以正辛醇为连续相,水为分散相,研究了六边形扩大微通道内液滴碰撞过程,发现了液滴聚并、碰撞不聚并和不相互接触3 种流动状态,研究了流量、颗粒浓度和颗粒亲疏水性对于液滴聚并率的影响规律,分析了颗粒在液膜排空过程中的作用机理。

关键词: Pickering 乳液, 微流体, 微通道, 聚并

Abstract:

Pickering emulsion is a liquid/liquid system stabilized by nano-particles. Microfluidic technology is an important method for preparing monodispersed Pickering emulsions. The droplet coalescence rule for the working system containing nano-particles is a core scientific issue for proceeding this new method. Using n-octanol and water as the continuous and dispersed phases respectively, the droplet collision processes in a broadening microchannel with a hexagon shape were investigated. Three typical flows (droplet coalescence, contact without coalescence and contactless) were confirmed. The effects of flow rate, nano-particle concentration and wetting property of nano-particles on the droplet coalescence percentage were studied. In addition, the working mechanism of nano-particles in the liquid film drainage processes were analyzed.

Key words: Pickering emulsion, microfluidics, microchannel, coalescence

中图分类号: 

  • TQ025.5

[1] Ramsden W. Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)-preliminary account[J]. Proceedings of the Royal Society of London, 1903:156-164.
[2] Pickering S U. Cxcvi.-emulsions[J]. Journal of the Chemical Society, Transactions, 1907, 91:2001-2021.
[3] CUNHA A G, MOUGEL J, CATHALA B, et al. Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses[J]. Langmuir, 2014, 30(31):9327-9335.
[4] WILLIAMS M, WARREN N J, FIELDING L A, et al. Preparation of double emulsions using hybrid polymer/silica particles:new Pickering emulsifiers with adjustable surface wettability[J]. ACS Appl. Mater. Inter., 2014, 6(23):20919-20927.
[5] BINKS B P, LUMSDON S O. Pickering emulsions stabilized by monodisperse latex particles:effects of particle size[J]. Langmuir, 2001, 17(15):4540-4547.
[6] LI X, SUN G, LI Y, et al. Porous TiO2 materials through Pickering high-internal phase emulsion templating[J]. Langmuir, 2014, 30(10):2676-2683.
[7] GUZMAN E, ORSI D, CRISTOFOLINI L, et al. Two-dimensional DPPC based emulsion-like structures stabilized by silica nanoparticles[J]. Langmuir, 2014, 30(39):11504-11512.
[8] WANG K, LU Y C, XU J H, et al. Generation of micromonodispersed droplets and bubbles in the capillary embedded T-junction microfluidic devices[J]. AIChE J., 2011, 57(2):299-306.
[9] WANG K, LU Y C, QIN K, et al. Generating gas-liquid-liquid three-phase microflows in a cross-junction microchannel device[J]. Chem. Eng. Technol., 2013, 36(6):1047-1060.
[10] BASU A S. Droplet morphometry and velocimetry (DMV)[J]. Lab Chip, 2013, 13(10):1892-1901.
[11] LIN X Y, WANG K, ZHANG J S, et al. Process intensification of the synthesis of poly(vinyl butyral) using a microstructured chemical system[J]. Ind. Eng. Chem. Res., 2015, 54(14):3582-3588.
[12] FU T T, FUNFSCHILLING D, MA Y, et al. Scaling the formation of slug bubbles in microfluidic flow-focusing devices[J]. Microfluid. Nanofluid., 2010, 8(4):467-475.
[13] KOTULA A P, ANNA S L. Probing timescales for colloidal particle adsorption using slug bubbles in rectangular microchannels[J]. Soft Matter, 2012, 8(41):10759-10772
[14] PRIEST C, REID M D, WHITBY C P. Formation and stability of nanoparticle-stabilized oil-in-water emulsions in a microfluidic chip[J]. J. Colloid Interf. Sci., 2011, 363(1):301-306.
[15] MULLIGAN M K, ROTHSTEIN J P. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows[J]. Langmuir, 2011, 27(16):9760-9768.
[16] DAGASTINE R R, MANICA R, CARNIE S L, et al. Dynamic forces between two deformable oil droplets in water[J]. Science, 2006, 313(5784):210-213.
[17] LIAO Y X, LUCAS D. A literature review on mechanisms and models for the coalescence process of fluid particles[J]. Chem. Eng. Sci., 2010, 65(10):2851-2864.
[18] WANG K, LU Y C, TOSTADO C P, et al. Coalescences of microdroplets at a cross-shaped microchannel junction without strictly synchronism control[J]. Chem. Eng. J., 2013, 227:90-96.
[19] WANG K, LU Y C, YANG L, et al. Microdroplet coalescences at microchannel junctions with different collision angles[J]. AIChE J., 2013, 59(2):643-649.
[20] SHAO H W, LU Y C, WANG K, et al. An experimental study of liquid-liquid microflow pattern maps accompanied with mass transfer[J]. Chin. J. Chem. Eng., 2012, 20(1):18-26.
[21] LI W, NIE Z H, ZHANG H, et al. Screening of the effect of surface energy of microchannels on microfluidic emulsification[J]. Langmuir, 2007, 23(15):8010-8014.

[1] 吴春旭, 李俊明. 方形微通道内流动凝结时气液相界面演进过程的数值模拟[J]. 化工学报, 2018, 69(7): 2851-2859.
[2] 孙见君, 陈国旗, 嵇正波, 马晨波. 接触式机械密封界面泄漏机理分析[J]. 化工学报, 2018, 69(4): 1528-1536.
[3] 张宝丹, 杨贝, 杨索和, 苏明月, 何广湘, 郭晓燕, 靳海波. 微通道反应器内硫酸钡沉积行为[J]. 化工学报, 2018, 69(4): 1461-1468.
[4] 张翀, 付涛涛, 姜韶堃, 朱春英, 马友光. 聚焦十字型微通道内高黏流体中气泡生成动力学[J]. 化工学报, 2018, 69(2): 650-654.
[5] 马蕊, 付涛涛, 张沁丹, 刘偲, 朱春英, 马友光. Y聚焦型微通道内磁流体液滴的生成与调控[J]. 化工学报, 2018, 69(2): 602-610.
[6] 杜保周, 李慧君, 郭保仓, 孔令健, 刘志刚. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989.
[7] 林冠屹, 朱春英, 付涛涛, 马友光. 微通道内MEA/MDEA混合溶液吸收CO2的传质特性[J]. 化工学报, 2018, 69(11): 4675-4682.
[8] 李阳, 杜乐, 高若梅, 吴偲, 龚亚辉. 微通道中原位分散技术可控制备氧化铜纳米流体及复合薄膜前体[J]. 化工学报, 2018, 69(11): 4918-4928.
[9] 鲍博, 赵双良, 徐建鸿. 基于微纳流控技术的流体相态特性研究进展[J]. 化工学报, 2018, 69(11): 4530-4541.
[10] 马朋成, 朱春英, 付涛涛, 马友光. 不对称T型微通道内液滴的无阻塞破裂动力学[J]. 化工学报, 2018, 69(11): 4633-4639.
[11] 沈秋颖, Tahir Muhammad Faran, Cumbula Armando José, 付涛涛, 姜韶堃, 朱春英, 马友光. 对称分支并行微通道中气液两相流的均匀性规律[J]. 化工学报, 2018, 69(11): 4640-4647.
[12] 丁云成, 王法军, 艾宁, 徐建鸿. 微反应器内连续重氮化/偶合反应进展[J]. 化工学报, 2018, 69(11): 4542-4552.
[13] 付涛涛, 徐子懿, Tahir Muhammad Faran, Cumbula Armando José, 姜韶堃, 朱春英, 马友光. 微通道内液滴/气泡破裂动力学分析[J]. 化工学报, 2018, 69(11): 4566-4576.
[14] 于樱迎, 唐瑾晨, 胡学功. 电场作用下矩形微槽群润湿特性数值分析[J]. 化工学报, 2018, 69(10): 4216-4223.
[15] 周云龙, 常赫. 滑移壁面蛇形微通道两相流数值模拟[J]. 化工学报, 2018, 69(10): 4194-4199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!