化工学报 ›› 2016, Vol. 67 ›› Issue (2): 549-556.doi: 10.11949/j.issn.0438-1157.20151251

• 催化、动力学与反应器 • 上一篇    下一篇

载体碱性对Fe基催化剂费-托合成反应的影响

张俊, 张征湃, 苏俊杰, 付东龙, 戴薇薇, 刘达, 徐晶, 韩一帆   

  1. 华东理工大学化学工程联合国家重点实验室, 上海 200237
  • 收稿日期:2015-08-03 修回日期:2015-10-13 出版日期:2016-02-05 发布日期:2015-10-14
  • 通讯作者: 韩一帆 E-mail:yifanhan@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(21273070,21576084)。

Effect of support basicity on iron-based catalysts for Fischer-Tropsch synthesis

ZHANG Jun, ZHANG Zhengpai, SU Junjie, FU Donglong, DAI Weiwei, LIU Da, XU Jing, HAN Yifan   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2015-08-03 Revised:2015-10-13 Online:2016-02-05 Published:2015-10-14
  • Supported by:

    supported by the National Natural Science Foundation of China (21273070, 21576084).

摘要:

低碳烃类化合物是化学工业中重要的有机原料,通过非石油路线由费-托反应(Fischer-Tropsch)制备低碳烃类具有巨大前景,载体对于费-托合成催化剂的反应产物分布具有重要影响。探究了载体碱性对负载型Fe 基催化剂在费-托合成反应中反应性能的影响。通过浸渍法制备了Fe20/AlPO4、Fe20/γ-Al2O3、Fe20/MgAl2O4 催化剂,考评结果表明,载体碱性越强,碳链增长概率(α值)越大,C5+选择性上升,烯烷比(O/P)增加。通过Raman 光谱和TPH 实验对由柠檬酸铁铵为前体煅烧后的催化剂表层碳物种进行分析表明,载体碱性越强,催化剂表面碳石墨化程度越高,吸附碳数量越少。并依托XRD、H2-TPR、CO2-TPR 表征信息构建了不同碱性载体负载的Fe 基催化剂的构效关系,表明载体给电子能力的强弱引起催化剂表面碳物质含量和金属载体相互作用的差异,最终导致了催化活性和选择性的不同。

关键词: 费-托合成, 合成气, 催化, Fe 基催化剂, 催化剂载体, 碱性, 碳物种

Abstract:

Lower hydrocarbons are key building blocks in chemical industry. The Fischer-Tropsch synthesis has been considered as one of the most promising non-oil based routes for lower hydrocarbons production. Previous studies have demonstrated that the supports can greatly affect the product distribution. In this work, the effects of the base property of supports on the catalytic performance of different Fe-based catalysts (Fe20/AlPO4, Fe20/γ-Al2O3 and Fe20/MgAl2O4) were investigated. The results showed that, with the increase in support basicity, the chain growth probability (α value), the selectivity of C5+ hydrocarbons and the olefins/paraffin ratio increased. Moreover, by combining with the Raman and temperature programmed hydrogenation (TPH), it was found that the higher basicity of supports could lead to the less active carbon (absorptive and atomic carbon) and the more inactive carbon (graphitized carbon) formation. In addition, with the combination of other characterization, such as XRD, H2-TPR, CO2-TPR, the structure-performance relationship was constructed. The variation in electron-donating ability of the supports strongly affected the content of carbonaceous species on the catalyst surface and the metal-support interaction, thereby leading to the difference in catalytic activity and selectivity.

Key words: Fischer-Tropsch synthesis, syngas, catalysis, Fe-based catalysts, catalyst support, basicity, carbon specie

中图分类号: 

  • TQ018

[1] COMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing:controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107-108:699-706.
[2] DIERCKS R, ARNDT J D, FREYER S, et al. Raw material changes in the chemical industry[J]. Chemical Engineering & Technology, 2008, 31(5):631-637.
[3] WANG S, ZHU Z H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation:a review[J]. Energy & Fuels, 2004, 18(4):1126-1139.
[4] 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1):3-8. DOI:10.3969/j.issn. 0438-1157. 2012.01.001. JIN Y, ZHOU Y C, HU S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1):3-8. DOI:10.3969/j.issn.0438-1157.2012.01.001.
[5] KUNKES E L, SIMONETTI D A, WEST R M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900):417-421.
[6] LI P, ZHANG W, HAN X, et al. Conversion of methanol to hydrocarbons over phosphorus-modified ZSM-5/ZSM-11 intergrowth zeolites[J]. Catalysis Letters, 2010, 134(1/2):124-130.
[7] DUPAIN X, KRUL R A, SCHAVERIEN C J, et al. Production of clean transportation fuels and lower olefins from Fischer-Tropsch synthesis waxes under fluid catalytic cracking conditions:the potential of highly paraffinic feedstocks for FCC[J]. Applied Catalysis B:Environmental, 2006, 63(3):277-295.
[8] GALVIS H M T, BITTER J H, Khare C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070):835-838.
[9] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas:a review[J]. ACS Catalysis, 2013, 3(9):2130-2149.
[10] SUN B, YU G, LIN J, et al. A highly selective Raney Fe@HZSM-5 Fischer-Tropsch synthesis catalyst for gasoline production:one-pot synthesis and unexpected effect of zeolites[J]. Catalysis Science & Technology, 2012, 2(8):1625-1629.
[11] BARRAULT J, FORQUY C, MENEZO J C, et al. Hydrocondensation of CO2 (CO) over supported iron catalysts[J]. Reaction Kinetics and Catalysis Letters, 1981, 17(3/4):373-378.
[12] BUKUR D B, LANG X, MUKESH D, et al. Binder/support effects on the activity and selectivity of iron catalysts in the Fischer-Tropsch synthesis[J]. Industrial & Engineering Chemistry Research, 1990, 29(8):1588-1599.
[13] CUBEIRO M L, LóPEZ C M, COLMENARES A, et al. Use of aluminophosphate molecular sieves in CO hydrogenation[J]. Applied Catalysis A:General, 1998, 167(2):183-193.
[14] SOMMEN A P B, STOOP F, VAN DER WIELE K. Synthesis gas conversion on carbon supported iron catalysts and the nature of deactivation[J]. Applied Catalysis, 1985, 14:277-288.
[15] SUN P, SIDDIQI G, CHI M, et al. Synthesis and characterization of a new catalyst Pt/Mg(Ga)(Al)O for alkane dehydrogenation[J]. Journal of Catalysis, 2010, 274(2):192-199.
[16] MACHIDA M, MINAMI S, HINOKUMA S, et al. Unusual redox behavior of Rh/AlPO4 and its impact on three-way catalysis[J]. Journal of Physical Chemistry C, 2014, 119(1):373-380.
[17] ORDOMSKY V V, LEGRAS B, CHENG K, et al. The role of carbon atoms of supported iron carbides in Fischer-Tropsch synthesis[J]. Catalysis Science & Technology, 2015, 5(3):1433-1437.
[18] HERINGTON E F G. The Fischer-Tropsch synthesis considered as a polymerization reaction[J]. Chemistry & Industry, 1946, 65:346-347.
[19] ANDERSON R B, FRIEDEL R A, STORCH H H. Fischer-Tropsch reaction mechanism involving stepwise growth of carbon chain[J]. Journal of Chemical Physics, 1951, 19(3):313-319.
[20] DE S E. The renaissance of iron-based Fischer-Tropsch synthesis:on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37(12):2758-2781.
[21] KUIVILA C S, STAIR P C, BUTT J B. Compositional aspects of iron Fischer-Tropsch catalysts:an XPS reaction study[J]. Journal of Catalysis, 1989, 118(2):299-311.
[22] XU K, SUN B, LIN J, et al. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst[J]. Nature Communications, 2014, 5:5783-5783.
[23] SHROFF M D, KALAKKAD D S, COULTER K E, et al. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. Journal of Catalysis, 1995, 156(2):185-207.
[24] YANG C, ZHAO H, HOU Y, et al. Fe5C2 nanoparticles:a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2012, 134(38):15814-15821.
[25] SUN B, LIN J, XU K, et al. Fischer-Tropsch synthesis over skeletal FeCe catalysts leached from rapidly quenched ternary Fe Ce Al alloys[J]. ChemCatChem, 2013, 5(12):3857-3865.
[26] JI M, CHEN G, WANG J, et al. Dehydrogenation of ethylbenzene to styrene with CO2 over iron oxide-based catalysts[J]. Catalysis Today, 2010, 158(3):464-469.
[27] 陈桂丽, 陈鑫, 王新葵,等. 铁系催化剂上乙苯与CO2 氧化脱氢反应[J]. 催化学报, 2009, 30(7):619-623. DOI:10.3321/j.issn:0253-9837.2009.07.007. CHEN G L, CHEN X, WANG X K, et al. Oxidative dehydrogenation of ethylbenzene with CO2 over iron oxide-based catalysts[J]. Chinese Journal of Catalysis, 2009, 30(7):619-623. DOI:10.3321/j.issn:0253-9837.2009.07.007.
[28] RAVAGNAN L, SIVIERO F, LENARDI C, et al. Cluster-beam deposition and in situ characterization of carbyne-rich carbon films[J]. Physical Review Letters, 2002, 89(28):287-291.
[29] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970, 53(3):1126-1130.
[30] XU J, BARTHOLOMEW C H. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts[J]. Journal of Physical Chemistry B, 2005, 109(6):2392-2403.
[31] LU J, YANG L, XU B, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2):613-621.
[32] GRACIA J M, PRINSLOO F F, Niemantsverdriet J W. Mars-van Krevelen-like mechanism of CO hydrogenation on an iron carbide surface[J]. Catalysis Letters, 2009, 133(3/4):257-261.ke Mechanism of CO Hydrogenation on an Iron Carbide Surface[J]. Catalysis Letters, 2009, 133(3-4):257-261.

 

[1] 朱益, 王浩, 陈利平, 郭子超, 何中其, 陈网桦. 基于数值计算方法计算最大反应速率到达时间[J]. 化工学报, 2019, 70(1): 379-387.
[2] 陈琛, 王颖, 刘宏, 陈艳, 姚明东, 肖文海. 影响多步脱氢酶CrtI功能的关键结构特征探索[J]. 化工学报, 2019, 70(1): 189-198.
[3] 王婵娜, 刘令, 王慧华, 屈天鹏, 田俊, 王德永, 康振辉. Co-Fe-Pd纳米粒子的可控制备及其氧还原催化性能[J]. 化工学报, 2019, 70(1): 319-326.
[4] 陈秀莹, 谢慧琳, 胡文斌, 周新华, 周红军, 舒绪刚. MCM-41负载Pt-Al催化剂的制备及其表征[J]. 化工学报, 2018, 69(S1): 72-79.
[5] 韩天义, 姚远, 徐珺, 齐立强, 李锦涛, 滕菲. 吸湿剂、表面活性剂及催化剂对烟气循环流化床脱硫的增效机制[J]. 化工学报, 2018, 69(9): 4044-4050.
[6] 聂士东, 李江涛, 张志颖, 刘云, 刘春艳. 多级结构银微-纳米晶的制备及其性能[J]. 化工学报, 2018, 69(9): 4090-4096.
[7] 耿莉莉, 杨凯旭, 张诺伟, 陈秉辉. Ru和Cu协同催化湿式氧化处理氨氮废水[J]. 化工学报, 2018, 69(9): 3869-3878.
[8] 刘芳琪, 于敦喜, 吴建群, 雷煜, 温昶, 徐明厚. 燃煤锅炉SCR对颗粒物排放特性影响[J]. 化工学报, 2018, 69(9): 4051-4057.
[9] 李国荣, 邹翔达, 王启凡, 王欣, 唐中帜, 周扬杰, 唐电. 高Si掺杂RuO2材料的晶体结构、电子结构和导电性[J]. 化工学报, 2018, 69(8): 3717-3723.
[10] 宋睿, 金光远, 崔政伟, 宋春芳, 陈海英. 酯交换反应体系混合物料的介电特性[J]. 化工学报, 2018, 69(8): 3670-3677.
[11] 崔建东, 崔兆惠, 苏志国, 郑春杨, 马光辉, 张松平. 生物3D打印蓖麻油基水性聚氨酯涂层固定化碳酸酐酶[J]. 化工学报, 2018, 69(8): 3577-3584.
[12] 尹越, 袁林江, 牛雨薇. DCMFC两腔液量变化与产电性能的关系[J]. 化工学报, 2018, 69(8): 3605-3610.
[13] 王杰, 张因, 郭健健, 赵丽丽, 赵永祥. Ni/ZrO2-SiO2催化剂催化乙酰丙酸加氢合成γ-戊内酯[J]. 化工学报, 2018, 69(8): 3452-3459.
[14] 汪宗御, 邝海浪, 张继锋, 纪玉龙. 基于DOC+SCR的船用柴油机尾气污染物脱除实验[J]. 化工学报, 2018, 69(7): 3249-3256.
[15] 张杰, 李涛. 甲烷化梅花状催化剂CFD计算及改进[J]. 化工学报, 2018, 69(7): 2985-2992.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!