化工学报 ›› 2015, Vol. 66 ›› Issue (9): 3437-3443.doi: 10.11949/j.issn.0438-1157.20150863

• 催化、动力学与反应器 • 上一篇    下一篇

Ti-MCM-41负载酞菁铁光催化氧化脱硫

张娟, 胡颜荟, 任腾杰, 李未康, 赵地顺   

  1. 河北科技大学化学与制药工程学院, 河北 石家庄 050018
  • 收稿日期:2015-06-09 修回日期:2015-07-02 出版日期:2015-09-05
  • 通讯作者: 张娟 E-mail:381113057@qq.com
  • 基金资助:

    国家自然科学基金项目(21106032)。

Photocatalytic oxidation desulfurization by iron phthalocyanine supported on Ti-MCM-41

ZHANG Juan, HU Yanhui, REN Tengjie, LI Weikang, ZHAO Dishun   

  1. College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
  • Received:2015-06-09 Revised:2015-07-02 Online:2015-09-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21106032).

摘要:

合成了钛硅分子筛Ti-MCM-41,通过对Ti-MCM-41改性以共价键将带有不同取代基的酞菁铁负载于Ti-MCM-41上制备出Ti-MCM-41负载酞菁铁催化剂,并利用红外光谱、X射线衍射、扫描电镜以及BET氮气吸附-脱附等温线以及紫外-可见吸收光谱对合成的催化剂进行表征。在常温常压下,以Ti-MCM-41负载酞菁铁为光催化剂,空气为氧化剂,己内酰胺四丁基溴化铵离子液体为萃取剂,可见光下催化氧化二苯并噻吩(DBT),采用单一变量法探索该体系的最佳反应条件。结果表明,Ti-MCM-41负载氨基酞菁铁具有较好的光催化活性,且在最佳工艺条件下,DBT的脱除率最高可达95.6%。催化剂重复使用5次后,催化活性没有明显下降。

关键词: 光催化氧化, 二苯并噻吩, 酞菁铁, Ti-MCM-41

Abstract:

Titanium-silicium molecular sieve Ti-MCM-41 was synthesized and the iron phthalocyanines(FePcs) with different substituent groups were loaded onto the modified Ti-MCM-41 by covalent bond to prepare FePcs(R)/Ti-MCM-41 catalyst. FePcs(R)/Ti-MCM-41 were characterized by FT-IR, XRD, SEM, BET and UV-Vis DRS. Dibenzothiophene(DBT) was photo-oxidized with FePcs(R)/Ti-MCM-41 as photocatalysts, air as oxidant and CPL-CTAB ionic liquid as extraction agent in the irradiation of visible light under room temperature and atmosphere. The optimal reaction conditions were explored by simple variable method. The results showed that FePc(NH2)/Ti-MCM-41 exhibited a better photocatalytic activity and the removal ratio of DBT was up to 95.6% under the optimal reaction conditions. The catalytic performance of FePc(NH2)/Ti-MCM-41 did not decrease obviously after reusing 5 runs of oxidation.

Key words: photocatalytic oxidation, dibenzothiophene, iron phthalocyanine, Ti-MCM-41

中图分类号: 

  • O623.83

[1] Castillo K, Parsons J G, Chavez D, Chianelli R R. Oxidation of dibenzothiophene to dibenzothiophene-sulfone using silica gel [J]. J.Catal., 2009, 268 (2): 329-334.
[2] Zhang J Y, Wang X F. Study on generation mechanism, pollution prevention and control of fog-haze [J]. Environmental Science and Management, 2013, 38(10): 157-159.
[3] Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catal. Today, 2003, 86(1-4): 211-214.
[4] Matsuzawa S, Tanaka J, Sato S, Ibusyki T. Photocatalytic oxidation of dibenzothiophenes in acetonicriele using TiO2: effect of hydrogen peroxide and ultrsound [J]. Journal of Photochemistry. A: Chemistry, 2002, 149: 183-189.
[5] Robertson J, Bandosz T J. Photooxidation of dibenzothiophene on TiO2/hectorite thin films layered catalyst [J]. Journal of Colloid and Interface Science, 2006, 299: 125-135.
[6] Zhang Juan, Zhao Dishun, Wang Jinlong, et al. Photocatalyticoxidation of dibenzothiophene using TiO2 / bamboo charcoal [J]. J. Mater. Sci.,2009, 44: 3112-3117.
[7] Zhang Juan, Zhao Dishun, Yang Liyan, Li Yongbo. Photocatalytic oxidation dibenzothiophene using TS-1 [J]. Chemical Engineering Journal, 2010, 156: 528-531.
[8] Fan Z Y, Li A M, Wu L, Hou G H, Gao G D, Chen J L. Research progress in degradation of contaminants in water catalyzed by metal phthalocyanine under visible light [J]. Modern Chemical Industry, 2006, 26(10): 20-24.
[9] Iliev V, Alexiev V, Bilyarska L. Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds [J]. Journal of Molecular Catalysis A: Chemical, 1999, 137(1/2/3): 15-22.
[10] Iliev V, Prahov L, Bilyarska L, et al. Oxidation and photooxidation of sulfide and thiosulfate ions catalyzed by transit ion metal chalcogenides and phthalocyanine complexes [J]. Journal of Molecular Catalysis A: Chemical, 2000, 151(1/ 2): 161-169.
[11] Jin Chun (晋春), Ma Jinghong (马静红), Fan Binbin (范彬彬), et al. Preparation, characterization and properties of cobalt phthalocyaninecovalent bonded to MCM-41 [J]. Chinese Journal of Inorganic Chemistry (无机化学学报), 2005, 21 (12): 1838-1843.
[12] Zhang Dan (张丹), Chang Xiaohong (常晓红), Zhang Bing (张兵), et al. Enzyme-like catalytic function of metalphthalocyanine derivatives and their applications [J]. Journal of Liaoning University: Natural Sciences Edition (辽宁大学学报:自然科学版), 2003, 30 (1): 87-90.
[13] Kadgaonkara M D, Iahaa S C, Pandey R K, et al. Cerium-containing MCM-41 materials as selective acylation and acylation catalysts [J]. Catal. Today, 2004, 97 (4): 225-231.
[14] Zhang Juan (张娟), Ren Tengjie (任腾杰), Hu Yanhui(胡颜荟), et al. Catalytic performance of metal phthalocyanine loaded on MCM-41molecular sieve in oxidation desulfurization [J]. CIESC Journal(化工学报), 2014, 65(8): 3012-3018.
[15] Zhang Juan, Zhao Dishun, Ma Zhen, Wang Yanan. Phase-boundary photocatalytic oxidation of dibenzothiophene over amphiphilic Ti-MCM-41 molecular sieve [J]. Catal. Lett., 2010, 138:111-115.
[16] Yao Yuyan(姚玉元),Sheng Fengxiang(盛凤翔), Wu Xiongping(吴熊平), et al. Catalytic oxidation of 2-mercaptoethanol by activated carbon fibers supported cobalt phthalocyanine [J]. Journal of Functional Materials(功能材料), 2011, 42(12): 2171-2175.
[17] Matteo G, Nicoletta R, Rinaldo P, et al. Epoxidation on titanium- containing silicates: do structural features really affect the catalytic performance [J]. Journal of Catalysis, 2003, 214: 242-250.
[18] Kropf H, Hoffmann Hd. Autoxidation von cumol in gegenwart von substituierten kupfer-phthalocyaninen und verwandten kupfer- komplexen [J]. Tetrahedron Letters, 1967, 8(7): 659-663.
[19] Buck T, Bohlen H, Wöhrle D, Schulz-Ekloff G, Andereev A. Influence of substituents and ligands of various cobalt (Ⅱ) porphyrin derivatives coordinately bonded to silica on the oxidation of mercaptan [J]. J. Mol. Catal., 1993, 80(2): 253-267.

[1] 张娟, 任腾杰, 胡颜荟, 李俊盼, 王春芳, 赵地顺. MCM-41分子筛负载金属酞菁在氧化脱硫反应中的催化性能[J]. 化工学报, 2014, 65(8): 3012-3018.
[2] 王广建,张金龙,褚衍佩. 不同水解条件下Ti-MCM-41介孔分子筛的合成及其催化氧化脱硫性能[J]. 化工进展, 2014, 33(11): 2970-2974.
[3] 汪怀远, 朱友庄, 赵景岩, 程小双, 张志华. TiO2载体特性对二苯并噻吩加氢脱硫性能的影响[J]. 化工学报, 2013, 64(7): 2462-2467.
[4] 张娟, 李俊盼, 任腾杰, 胡颜荟, 赵地顺. [Cnmim]Br/FeCl3型离子液体萃取脱除二苯并噻吩[J]. 化工学报, 2013, 64(10): 3647-3651.
[5] 李晓东1,2,朱元成1,2,潘素娟1,2,王长青1,2. TiO2纳米管阵列膜光催化降解苯胺[J]. 化工进展, 2012, 31(03): 558-561.
[6] 堵锡华. 多溴代二苯并呋喃/噻吩热力学性质的定量构效关系 [J]. , 2010, 61(12): 3059-3066.
[7] P>王甫洋,陈建挺,朱维廷,李定龙/P>.

多氯代二苯并噻吩亚砜热力学性质的密度泛函理论研究

[J]. , 2010, 61(1): 1-9.
[8] 罗明芳,高红帅,李玉光,邢建民,李 信,刘会洲. 油品固定化细胞脱硫研究进展 [J]. , 2009, 28(11): 1986-.
[9] 汪 涵,郭桂悦,周玉莹,梁忠越. 挥发性有机废气治理技术的现状与进展 [J]. , 2009, 28(10): 1833-.
[10] P>余谟鑫;王书文;黄思思;肖静;李忠/P>.

活性炭催化过氧化氢氧化脱附其表面吸附的二苯并噻吩

[J]. , 2008, 59(6): 1425-1429.
[11] P>王磊;沈本贤;徐亚荣/P>.

连续式FCC柴油萃取-光催化氧化深度脱硫

[J]. , 2008, 59(12): 3085-3089.
[12] 谢芳菲,刘福胜,解从霞,于世涛,葛晓萍. ZrO2/Ti-MCM-41的制备、表征及催化裂解聚丙烯反应的性能 [J]. , 2007, 26(5): 684-.
[13] 余谟鑫 李忠 夏启斌 王书文. 活性炭表面热氧化对其吸附二苯并噻吩性能影响 [J]. , 2007, 58(4): 938-943.
[14]

张爱勇;肖羽堂;吕晓龙;高冠道;张 萌

. 悬浮型光催化纳滤膜反应器处理H酸废水光催化降解效率及反应动力学
[J]. , 2007, 26(11): 1610-.
[15] P>马挺;李京浩;李国强;梁凤来;刘如林/P>.

红球菌DS-3脱硫发酵动力学模型的建立

[J]. , 2006, 57(6): 1418-1421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!