化工学报 ›› 2019, Vol. 70 ›› Issue (3): 850-856.doi: 10.11949/j.issn.0438-1157.20181024
Pan WEI1(),Jiabang YU1,Zengxu GUO1,Xiaohu YANG1,2(
),Yaling HE2
摘要:
针对管壳式相变蓄热器中换热基本单元——换热管开展了强化换热研究,通过在相变材料侧添加金属泡沫以强化蓄热。为了探索金属泡沫对相变蓄热过程强化的效果,设计搭建了相界面可视化的相变蓄热实验台,采用高清摄像机记录换热管内外侧相界面变化过程;通过在径向和轴向布置热电偶以获取相变过程的实时温度响应。测量了流速0.15 m·s-1下光管和金属泡沫管的蓄热过程,实验结果表明:在相同实验条件(初温、入口流量/温度)下,添加金属泡沫能明显提高蓄热效率,达到相同蓄热效果下纯石蜡管所需时间是金属泡沫管的2.9倍;添加金属泡沫后各测点的温度响应速率均高于对照组,各测试点的温差更小且变化更均匀。
中图分类号:
1 | HuangX, AlvaG, JiaY T, et al. Morphological characterization and applications of phase change materials in thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 128-145. |
2 | LiT X, LeeJ H, WangR Z, et al. Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J]. International Journal of Heat and Mass Transfer, 2014, 75: 1-11. |
3 | TaoY B, LinC H, HeY L. Effect of surface active agent on thermal properties of carbonate salt/carbon nanomaterial composite phase change material[J]. Applied Energy, 2015, 156: 478-489. |
4 | YangX H, LuZ, BaiQ S, et al. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fins[J]. Applied Energy, 2017, 202: 558-570. |
5 | Al-abidiA A, MatS, SopianK, et al. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers[J]. Applied Thermal Engineering, 2013, 53(1): 147-156. |
6 | RathodM K, BanerjeeJ. Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins[J]. Applied Thermal Engineering, 2015, 75: 1084-1092. |
7 | TaoY B, LiuY K, HeY L. Effects of PCM arrangement and natural convection on charging and discharging performance of shell-and-tube LHS unit[J]. International Journal of Heat and Mass Transfer, 2017, 115: 99-107. |
8 | ZhangP, MengZ N, ZhuH, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J]. Applied Energy, 2017, 185: 1971-1983. |
9 | YangX H, FengS S, ZhangQ L, et al. The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage[J]. Applied Energy, 2017, 194: 508-521. |
10 | WangZ C, ZhangZ Q, JiaL, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78: 428-436. |
11 | AldossT K, RahmanM M. Comparison between the single-PCM and multi-PCM thermal energy storage design[J]. Energy Conversion and Management, 2014, 83: 79-87. |
12 | SarıA, AlkanC, DöĞüŞCüD K, et al. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications[J]. Solar Energy, 2015, 115: 195-203. |
13 | ZhengY, BartonJ L, TuzlaA K, et al. Experimental and computational study of thermal energy storage with encapsulated NaNO3 for high temperature applications[J]. Solar Energy, 2015, 115: 180-194. |
14 | IbrahimN I, Al-sulaimanF A., RahmanS, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50. |
15 | YataganbabaA, OzkahramanB, KurtbasI. Worldwide trends on encapsulation of phase change materials: a bibliometric analysis (1990–2015)[J]. Applied Energy, 2017, 185: 720-731. |
16 | MesalhyO, LafdiK, ElgafyA, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management, 2005, 46(6): 847-867. |
17 | SiahpushA, O’brienJ, CrepeauJ. Phase change heat transfer enhancement using copper porous foam[J]. Journal of Heat Transfer, 2008, 130: 082301. |
18 | WuZ G, ZhaoC Y. Experimental investigations of porous materials in high temperature thermal energy storage systems[J]. Solar Energy, 2011, 85(7): 1371-1380. |
19 | XiaoX, ZhangP, LiM. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366. |
20 | XiaoX, ZhangP, LiM. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage[J]. International Journal of Thermal Sciences, 2014, 81: 94-105. |
21 | XiaoX, ZhangP, LiM. Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage[J]. Energy Conversion and Management, 2015, 105: 272-284. |
22 | 吴志根, 赵长颖, 顾清之. 多孔介质在高温相变蓄热中的强化换热[J]. 化工学报, 2012, 63(S1): 119-122. |
WuZ G, ZhaoC Y, GuQ Z. Heat transfer enhancement of high temperature thermal energy storage using porous materials[J]. CIESC Joural, 2012,63(S1): 119-122. | |
23 | 吴志根, 陶文铨. 金属矩阵材料在相变蓄热中的强化换热分析[J]. 工程热物理学报, 2013, 34(2): 307-309. |
WuZ G, TaoW Q. Analysis of the heat transfer performance of metal matrix matirial in the phase change thermal storage system[J]. Journal of Engineering Thermophysics, 2013, 34(2): 307-309. | |
24 | 杲东彦, 陈振乾. 格子Boltzmann方法模拟泡沫金属内相变材料热传导融化传热过程[J]. 热科学与技术, 2011, 10(1): 6-11. |
GaoD Y, ChenZ Q. Lattice Boltzmann simulation of conduction melting of phase change materials in metal foams[J]. Journal of Thermal Science and Technology, 2011, 10(1): 6-11. | |
25 | 杲东彦, 陈振乾, 陈凌海. 开孔泡沫铝内石蜡融化相变过程的可视化实验研究[J]. 化工学报, 2014, 65(S1): 95-100. |
GaoD Y, ChenZ Q, ChenL H. Visualized experiment of paraffin wax in aluminum foam with open cells[J]. CIESC Journal, 2014, 65(S1): 95-100. | |
26 | 杨佳霖, 杜小泽, 杨立军, 等. 泡沫金属强化石蜡相变蓄热过程可视化实验[J]. 化工学报, 2015, 66(2): 497-503. |
YangJ L, DuX Z, YangL J, et al. Visualized experiemnt on dynamic thermal behavior of phase change material in metal foam[J]. CIESC Journal, 2015,66(2): 497-503. | |
27 | LiuZ Y, YaoY P, WuH Y. Numerical modeling for solid-liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage[J]. Applied Energy, 2013, 112: 1222-1232. |
28 | TaoY B, YouY, HeY L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material [J]. Applied Thermal Engineering, 2016, 93: 476-485. |
29 | YangX H, WangW B, YangC, et al. Solidification of fluid saturated in open-cell metallic foams with graded morphologies[J]. International Journal of Heat and Mass Transfer, 2016, 98: 60-69. |
30 | WangC Y, FengL L, LiW, et al. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials[J]. Solar Energy Materials and Solar Cells, 2012, 105: 21-26. |
31 | 张寅平, 胡汉平, 孔祥东, 等. 相变贮能-理论与应用[M]. 合肥: 中国科学技术大学出版社, 1996: 24-25. |
ZhangY P, HuH P, KongX D, et al. Phase Change Energy Storage Theory and Application[M]. Hefei: University of Science and Technology of China Press, 1996: 23-24. | |
32 | 肖鑫, 张鹏. 泡沫石墨/石蜡复合相变材料热物性研究[J]. 工程热物理学报, 2013, 34(3): 530-533. |
XiaoX, ZhangP.Thermal characterization of graphite foam/paraffin composite phase change material[J]. Journal of Engineering Thermophysics, 2013, 34(3): 530-533. |
[1] | 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92. |
[2] | 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771. |
[3] | 周麟晨, 孙志高, 陆玲, 王赛, 李娟, 李翠敏. 有机相变乳液中HCFC–141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681. |
[4] | 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271. |
[5] | 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891. |
[6] | 王舜浩, 朱文俐, 胡正根, 周芮, 余柳, 王彬, 张小斌. 液氢缩比贮箱蒸发特性数值模拟及实验验证[J]. 化工学报, 2019, 70(3): 840-849. |
[7] | 王耀武, 彭建平, 狄跃忠, 蒿鹏程. 铝电解槽干式防渗料在电解过程中的反应机理探讨[J]. 化工学报, 2019, 70(3): 1035-1041. |
[8] | 刘小诗, 邹得球, 贺瑞军, 马先锋. 氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性[J]. 化工学报, 2019, 70(3): 1188-1197. |
[9] | 闫鑫, 徐进良. 超疏水表面太阳能加热金-水纳米流体液滴蒸发特性[J]. 化工学报, 2019, 70(3): 892-900. |
[10] | 李静岩, 刘中良, 周宇, 李艳霞. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82. |
[11] | 陈卫, 任瑛. 流态化与物质相变的相似性[J]. 化工学报, 2019, 70(1): 1-9. |
[12] | 胡晨辉, 王亦飞, 包泽彬, 于广锁. 蒸发热水塔内固体颗粒对气泡运动的影响[J]. 化工学报, 2019, 70(1): 39-48. |
[13] | 周孙希, 章学来, 刘升, 陈启杨, 徐笑锋, 王迎辉. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297. |
[14] | 张亮, 史忠科. 相变储能技术在汽车节能中的应用进展[J]. 化工学报, 2018, 69(S2): 17-25. |
[15] | 万星晨, 林文胜. 螺旋管丙烷流动沸腾换热特性[J]. 化工学报, 2018, 69(S2): 135-140. |