化工学报 ›› 2014, Vol. 65 ›› Issue (7): 2629-2637.doi: 10.3969/j.issn.0438-1157.2014.07.022

• 综述与专论 • 上一篇    下一篇

二氧化硅表面修饰硅烷偶联剂APTS的过程和机制

乔冰, 高晗, 王亭杰, 金涌   

  1. 清华大学化学工程系, 北京 100084
  • 收稿日期:2014-03-25 修回日期:2014-04-05 出版日期:2014-07-05 发布日期:2014-07-05
  • 通讯作者: 王亭杰 E-mail:wangtj@tsinghua.edu.Cn
  • 基金资助:
    国家自然科学基金项目(21176134)。

Process and mechanism of surface modification of silica with silane coupling agent APTS

QIAO Bing, GAO Han, WANG Tingjie, JIN Yong   

  1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2014-03-25 Revised:2014-04-05 Online:2014-07-05 Published:2014-07-05
  • Supported by:
    supported by the National Natural Science Foundation of China (21176134).

摘要: 二氧化硅表面经过硅烷偶联剂γ-氨丙基三乙氧基硅烷(APTS)修饰后,在橡胶、塑料、催化剂、色谱柱、吸附剂、生物和医药等领域中具有独特的应用性能,大量文献结合特定应用体系研究二氧化硅表面修饰APTS的基本规律,以实现理想可控的修饰效果。总结这些分散性研究结果,有利于在新的基础上有效地促进研究的深入。在分析文献的基础上,系统地阐述了二氧化硅表面修饰APTS的反应机理、修饰工艺、反应动力学、修饰层稳定性和结构形貌等方面的研究进展,提出了目前研究还存在的问题和进一步的研究方向。

关键词: 二氧化硅, 表面, 多相反应, 硅烷偶联剂, 接枝, 修饰

Abstract: After modification using gamma aminopropyltriethoxysilane (APTS), the silica surface demonstrates unique performance in the applications to rubber, plastics, catalyst, chromatography column, adsorbent, biologicals and pharmaceuticals. A large number of literatures focus on APTS modification of silica in the specific application background for achieving ideal and controllable modification. Summarizing these scattered results and discoveries can effectively promote research further on a new stage. Based on an analysis of literatures, the mechanism of reaction, process of modification, kinetics of reaction, stability and structure of the modified layer are reviewed. The existing problems in the current state of the research and the directions for further research are proposed.

Key words: silica, surface, multiphase reaction, silane coupling agent, graft, modification

中图分类号: 

  • TQ031
[1] Plueddemann E P. Silane Coupling Agents[M]. 2nd ed. New York: Plenum, 1991: 153-249
[2] Wang Huanling(王奂玲), Yan Liang(闫亮), Zhao Rui(赵睿), Suo Jishuan(索继栓). Study on the synthesis and catalytic performance of aminopropyl functionalized SBA-15 mesoporous molecular sieves[J]. Journal of Molecular Catalysis (分子催化),2005, 19(1): 1-6
[3] O'Gara J E, Walsh D P, Phoebe C H, Alden B A, Bouvier I, Iraneta P C, Capparella M, Walter T H. Embedded-polar-group bonded phases for high performance liquid chromatography[J]. LC GC North America, 2001, 19(6): 632
[4] Vansant E F, van der Voort P, Vrancken K C. Characterization and Chemical Modification of the Silica Surface[M]. Amsterdam: Elsevier, 1995
[5] Etienne M, Walcarius A. Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium[J]. Talanta, 2003, 59(6): 1173-1188
[6] Jal P K, Patel S, Mishra B K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions[J]. Talanta, 2004, 62(5): 1005-1028
[7] Walcarius A, Etienne M, Delacote C. Uptake of inorganic HgII by organically modified silicates: influence of pH and chloride concentration on the binding pathways and electrochemical monitoring of the processes[J]. Analytica Chimica Acta, 2004, 508(1): 87-98
[8] Kłonkowski A M, Grobelna B, Widernik T, Jankowska-Frydel A, Mozgawa W. The coordination state of copper(Ⅱ) complexes anchored and grafted onto the surface of organically modified silicates [J]. Langmuir, 1999, 15(18): 5814-5819
[9] Oh S, Kang T, Kim H, Moon J, Hong S, Yi J. Preparation of novel ceramic membranes modified by mesoporous silica with 3-aminopropyltriethoxysilane (APTES) and its application to Cu2+ separation in the aqueous phase[J]. Journal of Membrane Science, 2007, 301(1/2): 118-125
[10] Briand E, Humblot V, Landoulsi J, Petronis S, Pradier C M, Kasemo B, Svedhem S. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces[J]. Langmuir, 2011, 27(2): 678-685
[11] Kim J, Cho J, Seidler P M, Kurland N E, Yadavalli V K. Investigations of chemical modifications of amino-terminated organic films on silicon substrates and controlled protein immobilization[J]. Langmuir, 2010, 26(4): 2599-2608
[12] Levy L, Sahoo Y, Kim K S, Bergey E J, Prasad P N. Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications[J]. Chemistry of Materials, 2002, 14(9): 3715-3721
[13] Liu Z G, Li Z, Zhou H L, Wei G, Song Y H, Wang L. Imaging DNA molecules on mica surface by atomic force microscopy in air and in liquid[J]. Microscopy Research and Technique, 2005, 66(4): 179-185
[14] Nehilla B J, Popat K C, Vu T Q, Chowdhury S, Standaert R F, Pepperberg D R, Desai T A. Neurotransmitter analog tethered to a silicon platform for neuro-BioMEMS applications[J]. Biotechnology and Bioengineering, 2004, 87(5): 669-674
[15] Takei T, Kato K, Meguro A, Chikazawa M. Infrared spectra of geminal and novel triple hydroxyl groups on silica surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150(1/2/3): 77-84
[16] Yermakov Y L, Kuznetsov B N, Zakharov V A. Catalysis by Supported Complexes[M]. Amsterdam: Elsevier Scientific Publishing Com., 1981: 59-61
[17] Ek S, Iiskola E I, Niinistö L, Vaittinen J, Pakkanen T T, Root A. A 29Si and 13C CP/MAS NMR study on the surface species of gas-phase-deposited γ-aminopropylalkoxysilanes on heat-treated silica[J]. The Journal of Physical Chemistry B, 2004, 108(31): 11454-11463
[18] Acres R G, Ellis A V, Alvino J, Lenahan C E, Khodakov D A, Metha G F, Andersson G G. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces[J]. Journal of Physical Chemistry C, 2012, 116(10): 6289-6297
[19] Zhu M J, Lerum M Z, Chen W. How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica[J]. Langmuir, 2012, 28(1): 416-423
[20] Vrancken K C, Casteleyn E, Possemiers K, van der Voort P, Vansant E F. Modelling of the reaction-phase interaction of γ-aminopropyltriethoxysilane with silica[J]. J. Chem. Soc., Faraday Trans., 1993, 89: 2037-2040
[21] Morrall S W, Leyden D E. Silanes, Surfaces, and Interfaces[M]. New York: Gordon and Breach, 1985: 501
[22] Vrancken K C, Possemiers K, van der Voort P, Vansant E F. Surface modification of silica gels with aminoorganosilanes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 98(3): 235-241
[23] Wang Gang(王刚), Yan Feng(颜峰), Teng Zhaogang(滕兆刚), Yang Wensheng(杨文胜), Li Tiejin(李铁津). The surface modification of silica with APTS[J]. Progress in Chemistry(化学进展), 2006, 18(2/3): 238-245
[24] Kanan S A, Tze W, Tripp C P. Method to double the surface concentration and control the orientation of adsorbed (3-aminopropyl)dimethylethoxysilane on silica powders and glass slides[J]. Langmuir, 2002, 18(17): 6623-6627
[25] Smith E A, Chen W. How to prevent the loss of surface functionality derived from aminosilanes[J]. Langmuir, 2008, 24(21): 12405-12409
[26] Pasternack R M, Amy S R, Chabal Y J. Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature[J]. Langmuir, 2008, 24(22): 12963-12971
[27] Howarter J A, Youngblood J P. Optimization of silica silanization by 3-aminopropyltriethoxysilane[J]. Langmuir, 2006, 22(26): 11142-11147
[28] Aissaoui N, Bergaoui L, Landoulsi J, Lambert J F, Boujday S. Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption[J]. Langmuir, 2012, 28(1): 656-665
[29] Fiorilli S, Rivolo P, Descrovi E, Ricciardi C, Pasquardini L, Lunelli L, Vanzetti L, Pederzolli C, Onida B, Garrone E. Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates[J]. Journal of Colloid and Interface Science, 2008, 321(1): 235-241
[30] Simon A, Cohen-Bouhacina T, Porte M C, Aime J P, Baquey C. Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface[J]. Journal of Colloid and Interface Science, 2002, 251(2): 278-283
[31] Wang W, Vaughn M W. Morphology and amine accessibility of (3-aminopropyl) triethoxysilane films on glass surfaces[J]. Scanning, 2008, 30(2): 65-77
[32] Shimizu I, Okabayashi H, Taga K, Yoshino A, Nishio E, Oconnor C J. Raman scattering study of the interaction of 3-aminopropyltriethoxy silane on silica gel. Time-dependent conformational change of aminopropylsilyl segments[J]. Vibrational Spectroscopy, 1997, 14(1): 125-132
[33] Vandenberg E T, Bertilsson L, Liedberg B, Uvdal K, Erlandsson R, Elwing H, Lundström I. Structure of 3-aminoproply triethoxy silane on silicon oxide[J]. Journal of Colloid and Interface Science, 1991, 147: 103-118
[34] Lazghab M, Saleh K, Guigon P. Functionalisation of porous silica powders in a fluidised-bed reactor with glycidoxypropyltrimethoxysilane (GPTMS) and aminopropyltriethoxysilane (APTES)[J]. Chemical Engineering Research & Design, 2010, 88(5/6): 686-692
[35] Cuoq F, Masion A, Labille J, Rose J, Ziarelli F, Prelot B, Bottero J Y. Preparation of amino-functionalized silica in aqueous conditions[J]. Applied Surface Science, 2013, 266: 155-160
[36] Zhang F X, Srinivasan M P. Self-assembled molecular films of aminosilanes and their immobilization capacities[J]. Langmuir, 2004, 20(6): 2309-2314
[37] Perruchot C, Chehimi M M, Delamar M, Fievet F. Use of aminosilane coupling agent in the synthesis of conducting, hybrid polypyrrole-silica gel particles[J]. Surface and Interface Analysis, 1998, 26(9): 689-698
[38] Cai C J, Shen Z G, Xing Y S, Ma S L. Surface topography and character of gamma-aminopropyltriethoxysilane and dodecyltrimethoxysilane films adsorbed on the silicon dioxide substrate via vapour phase deposition[J]. Journal of Physics D-Applied Physics, 2006, 39(22): 4829-4837
[39] Choi H, Chen I. Surface-modified silica colloid for diagnostic imaging[J]. Journal of Colloid and Interface Science, 2003, 258(2): 435-437
[40] Ek S, Iiskola E I, Niinisto L. Gas-phase deposition of aminopropylalkoxysilanes on porous silica[J]. Langmuir, 2003, 19(8): 3461-3471
[41] Ek S, Iiskola E I, Niinisto L, Pakkanen T T, Root A. New bonding modes of gas-phase deposited gamma-aminopropyltriethoxysilane on silica studied by Si-29 CP/MAS NMR[J]. Chemical Communications, 2003, 16: 2032-2033
[42] Ek S, Iiskola E I, Niinisto L, Vaittinen J, Pakkanen T T, Keranen J, Auroux A. Atomic layer deposition of a high-density aminopropylsiloxane network on silica through sequential reactions of gamma-aminopropyltrialkoxysilanes and water[J]. Langmuir, 2003, 19(25): 10601-10609
[43] Juvaste H, Iiskola E I, Pakkanen T T. Preparation of new modified catalyst carriers[J]. Journal of Molecular Catalysis A-Chemical, 1999, 150(1/2): 1-9
[44] Rai V R, Agarwal S. Mechanism of self-catalytic atomic layer deposition of silicon dioxide using 3-aminopropyl triethoxysilane, water, and ozone[J]. Chemistry of Materials, 2011, 23(9): 2312-2316
[45] Suntola T. Surface chemistry of materials deposition at atomic layer level[J]. Applied Surface Science, 1996, 100: 391-398
[46] Shimizu I, Okabayashi H, Taga K, Nishio E, O'Connor C J. Diffuse reflectance infrared Fourier transform spectral study of the thermal and adsorbed-water effects of a 3-aminopropyltriethoxysilane layer modified onto the surface of silica gel[J]. Vibrational Spectroscopy, 1997, 14(1): 113-123
[47] Yoshino A, Okabayashi H, Shimizu I, Oconnor C J. Kinetics of interaction of 3-aminopropyltriethoxysilane with silica gel using elemental analysis and Si-29 NMR spectra[J]. Colloid and Polymer Science, 1997, 275(7): 672-680
[48] Shimizu I, Yoshino A, Okabayashi H, Nishio E J O C. Kinetics of interaction of 3-aminopropyltriethoxysilane on a silica gel surface using elemental analysis and diffuse reflectance infrared Fourier transform spectra[J]. J. Chem. Soc., Faraday Trans., 1997, 93: 1971-1979
[49] Albert K, Brindle R, Schmid J, Buszewski B, Bayer E. CP/MAS NMR investigations of silica gel surfaces modified with aminopropylsilane[J]. Chromatographia, 1994, 38(5/6): 283-290
[50] Siqueira Petri D F, Wenz G, Schunk P, Schimmel T. An improved method for the assembly of amino-terminated monolayers on SiO2 and the vapor deposition of gold layers[J]. Langmuir, 1999, 15(13): 4520-4523
[51] Moon J H, Shin J W, Kim S Y, Park J W. Formation of uniform aminosilane thin layers: an imine formation to measure relative surface density of the amine group[J]. Langmuir, 1996, 12(20): 4621-4624
[52] Kim J, Holinga G J, Somorjai G A. Curing induced structural reorganization and enhanced reactivity of amino-terminated organic thin films on solid substrates: observations of two types of chemically and structurally unique amino groups on the surface[J]. Langmuir, 2011, 27(9): 5171-5175
[1] 彭思玉, 郑成, 毛桃嫣, 魏渊, 宋华峰. 双十八烷基四羟乙基二溴丙二铵的微波合成及其性能研究[J]. 化工学报, 2019, 70(S1): 202-210.
[2] 陈燕饶, 毛桃嫣, 郑成. 双十八烷基二羟乙基溴化铵的微波合成及性能[J]. 化工学报, 2019, 70(S1): 226-234.
[3] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
[4] 秦宁, 闵清, 邵开元, 胡文祥. 间甲基苯甲脒盐酸盐的合成研究[J]. 化工学报, 2019, 70(S1): 242-247.
[5] 冯世豪,唐晓飞,都健,孟庆伟. 用微反应器实现可见光驱动的不对称氧化连续化反应[J]. 化工学报, 2019, 70(8): 3202-3209.
[6] 姜自超, 方建华, 江泽琦, 王鑫, 冯彦寒, 丁建华. 纳米WS2润滑油添加剂在直流磁场下的摩擦磨损特性[J]. 化工学报, 2019, 70(7): 2636-2644.
[7] 王龙, 刘会娥, 刘宇童, 于云飞, 陈爽, 于文赫, 张秀霞. 微乳液法用于落地原油应急处理及资源回收的研究[J]. 化工学报, 2019, 70(7): 2699-2707.
[8] 张友亮, 程香平, 韦江, 康林萍, 付远. 微椭圆孔轴面织构油封密封性能仿真模拟及机理探究[J]. 化工学报, 2019, 70(7): 2660-2667.
[9] 谷莹露, 刘会娥, 陈爽, 王龙, 刘宇童. 油水比对阴离子型微乳液相行为的影响[J]. 化工学报, 2019, 70(7): 2626-2635.
[10] 阴义轩, 成婷婷, 鲍晓军, 袁珮. 丁腈橡胶非均相加氢催化剂失活原因及再生性能研究[J]. 化工学报, 2019, 70(7): 2528-2539.
[11] 郭月莹, 谢建良, 彭波. 可见高吸收红外高反射薄膜制备及光学特性研究[J]. 化工学报, 2019, 70(6): 2325-2333.
[12] 尚良超, 陈晓东, 肖杰. 喷雾干燥颗粒表面形貌形成过程粗粒化模拟[J]. 化工学报, 2019, 70(6): 2153-2163.
[13] 徐超, 薛誉, 陈虹月, 胡燚. 手性脯氨酸类离子液体化学修饰猪胰脂肪酶催化性能研究[J]. 化工学报, 2019, 70(6): 2221-2228.
[14] 叶学民, 李明兰, 张湘珊, 杨少东, 李春曦. 平板浸涂过程中的液膜排液影响因素[J]. 化工学报, 2019, 70(6): 2164-2173.
[15] 周麟晨, 孙志高, 陆玲, 王赛, 李娟, 李翠敏. 有机相变乳液中HCFC–141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈育如, 虞启明, 徐红卫, 陈雁. Oxygen Transfer and Hydrodynamics in a Flexible Fibre Biofilm Reactor for Wastewater Treatment[J]. , 2009, 17(5): 879 -882 .
[2] 范燕平, 王庆印, 杨先贵, 姚洁, 王公应. Synthesis of Didodecyl Carbonate via Transesterification Catalyzed by KF/MgO[J]. , 2009, 17(5): 883 -886 .
[3] 李进龙, 何清, 何昌春, 彭昌军, 刘洪来. Representation of Phase Behavior of Ionic Liquids Using the Equation of State for Square-well Chain Fluids with Variable Range[J]. , 2009, 17(6): 983 -989 .
[4] 黄雪莉, 李松菀. Liquid-solid Equilibria in Quinary System Na+, K+, Mg2+//Cl-, NO3--H2O at 25℃[J]. , 2011, 19(1): 101 -107 .
[5] 罗小明, 何利民, 马华伟. Flow Pattern and Pressure Fluctuation of Severe Slugging in Pipeline-riser System[J]. , 2011, 19(1): 26 -32 .
[6] 刘公平, 侯丹, 卫旺, 相里粉娟, 金万勤. Pervaporation Separation of Butanol-Water Mixtures Using Polydimethylsiloxane/Ceramic Composite Membrane[J]. , 2011, 19(1): 40 -44 .
[7] 罗明良, 温庆志, 刘佳林, 刘洪见, 贾自龙. Fabrication of SPES/Nano-TiO2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism[J]. , 2011, 19(1): 45 -51 .
[8] 蔡双飞, 王利生. Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Brφnsted Acidic Ionic Liquid as Catalyst[J]. , 2011, 19(1): 57 -63 .
[9] 蒋勇, 邱榕. A Reduced Mechanism for Flame Inhibition by Phosphorus-containing Compounds Based on Level of Importance Analysis[J]. , 2010, 18(5): 711 -720 .
[10] 梁蕊, 杨美荣, 轩小鹏. Thermal Stability and Thermal Decomposition Kinetics of 1-Butyl-3-methylimidazolium Dicyanamide[J]. , 2010, 18(5): 736 -741 .