化工学报

• 综述与专论 • 上一篇    下一篇

温度对产甲烷菌代谢途径和优势菌群结构的影响

吴美容1,2, 张瑞1,2, 周俊1,2, 谢欣欣1,2, 雍晓雨1,2, 闫志英3, 葛明民1,2, 郑涛1,2   

  1. 1 南京工业大学生物与制药工程学院, 江苏 南京 211816;
    2 南京工业大学生物能源研究所, 江苏 南京 211816;
    3 中国科学院成都生物研究所, 四川 成都 610041
  • 收稿日期:2014-01-02 修回日期:2014-02-09 出版日期:2014-05-05 发布日期:2014-02-26
  • 通讯作者: 郑涛 E-mail:zhengtao@njtech.edu.cn
  • 基金资助:

    国家重点基础研究发展计划项目(2013CB733504);国家自然科学基金项目(21307058,21207065);江苏农业自主创新项目(CX(13)3045);中国科学院环境与应用微生物重点实验室开放基金项目(KLCAS-2013-05)。

Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria

WU Meirong1,2, ZHANG Rui1,2, ZHOU Jun1,2, XIE Xinxin1,2, YONG Xiaoyu1,2, YAN Zhiying3, GE Mingmin1,2, ZHENG Tao1,2   

  1. 1 School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China;
    2 Bioenergy Research Institute, Nanjing Tech University, Nanjing 211816, Jiangsu, China;
    3 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
  • Received:2014-01-02 Revised:2014-02-09 Online:2014-05-05 Published:2014-02-26
  • Supported by:

    supported by the National Basic Research Program of China (2013CB733504), the National Natural Science Foundation of China (21307058, 21207065), the Jiangsu Agricultural Independent Innovation Project (CX(13)3045) and the Chinese Academy of Environmental and Application of Microbial Key Laboratory Fund Project (KLCAS-2013-05).

摘要: 产甲烷菌是严格厌氧的古菌,由其完成的产甲烷过程通常是厌氧微生物生化代谢中最重要的限速步骤。温度作为影响产甲烷菌的产甲烷速率重要因素,其变化会改变生物环境中的产甲烷的代谢途径和优势菌群分布。目前已知甲烷生物合成有3条途径:乙酸代谢途径、CO2还原途径和甲基营养型途径。理论上乙酸途径生成的甲烷约占甲烷生成总量的2/3,CO2还原产甲烷途径则约占1/3,甲基营养型途径只在少数情况下考虑其影响,例如盐湖。在低温条件下产甲烷菌以利用乙酸代谢为主;在中温条件下,产甲烷途径以乙酸代谢和H2/CO2还原一定比例存在;在高温和超高温条件下,以只利用CO2还原途径的菌群为主。

关键词: 甲烷, 生物能源, 代谢, 产甲烷菌, 温度, 乙酸代谢途径, CO2还原产甲烷途径

Abstract: Methanogens are strictly anaerobic archaea, which not only take part in the methanogenesis procedure but also limit this process. Temperature plays a key role in the anaerobic fermentation. Temperature could not only directly alter the community structure and function of methanogenic archaea,but also affect the supply of substrates for methanogens,which in turn indirectly regulates the pathways of methanogenic archaea.There are three pathway for methanogenesis, and they are started from acetic acid, H2/CO2 and C-1 compound respetively. Acetoclastic methanogenesis accounts for about two-thirds of the total methane production globally, while hydrogenotrophic methanogenesis accounts for about one third. Methanol- and methyl amine-derived methanogensis is restricted in ocean and saline water. Acetoclastic methanogenesis is the predominant methanogenesis at a low temperature, and methane is produced by acetoclastic and hydrogenotrophic methanogenesis at a medium temperature, while methane is exclusively produced by hydrogenotrophic methanogenesis at a high or ultra-high temperature.

Key words: methane, bioenergy, metabolism, methanogens, temperature, acetoclastic methanogenesis, hydrogenotrophic methanogenesis

中图分类号: 

  • Q939.9
[1] Liu Chang(刘畅), Lu Xiaohua(陆小华). Carbon reduction pattern in China: comparison of CCS and biomethane route [J]. CIESC Journal (化工学报), 2012, 61(1):7-10
[2] Gong Weijia(公维佳), Li Wenzhe(李文哲), Liu Jianyu(刘建禹). Progress of research on methanogens bacteria inanaerobic digestion [J]. Journal of Northeast Agricultural University(东北农业大学学报), 2006, 37(6): 838-841
[3] Shan Liwei(单丽伟), Feng Guiying(冯贵颖), Fan Sanhong(范三红). Process in Genome and Methanogenesis of Methanogens[J]. Journal of Microbiology(微生物学杂志), 2003, 23(6): 42-46
[4] Oremland R S, Marsh L, Des Marais D J. Methanogenesis in Big Soda Lake, Nevada: an alkaline, moderately hypersaline desert lake[J]. Appl. Environ. Microb., 1982,43: 462-468
[5] Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments [J]. FEMS Microbiology Ecology, 1999, 28(3): 193-202
[6] Karakashev D, Batstone D J, Trably E, et al. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae [J]. Applied and Environmental Microbiology, 2006, 72(7): 5138-5141
[7] Conrad R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal [J]. Organic Geochemistry, 2005, 36(5): 739-752
[8] Avery G B, Shannon R D, White J R, et al.Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction [J]. Biogeochemistry, 2003, 62:19-37
[9] Zuo Jiane, Xing Wei. Department of environmental science and engineering[J]. Chin. J. Appl. Ecol., 2007, 18(9): 2127- 2132
[10] Akila G, Chandra T S. Performance of an UASB reactor treating synthetic wastewater at low temperature using cold adapted seed slurry [J]. Process Biochemisty, 2007, 42: 466-471
[11] Jiang Na(蒋娜), Chen Zijuan(陈紫娟), Dong Xiuzhu(东秀珠). Methanogenic archaea and their mediated methanogenic pathways in cold wetland [J]. Microbiol. China(微生物学通报), 2013, 40(1): 146-157
[12] Chin K J, Conrad R. Intermediary metabolism in methanogenic paddy soil and the influence of temperature[J]. FEMS Microbiology Ecology, 1995, 18(2): 85-102
[13] Kotsyurbenko O R, Nozhevnikova A N, Zavarzin G A. Methanogenic degradation of organic matter by anaerobic bacteria at low temperature[J]. Chemosphere, 1993, 27(9): 1745-1761
[14] Kotsyurbenko O R, Nozhevnikova A N, Soloviova T I, et al. Methanogenesis at low temperatures by microflora of tundra wetland soil [J]. Antonie van Leeuwenhoek, 1996, 69(1): 75-86
[15] Zhang D D, Zhu W B, Tang C, Suo Y L, Gao L J, Yuan X F, Wang X F, Cui Z J. Bioreactor performance and methanogenic population dynamics in a low-temperature(5—18℃)anaerobic fixed-bed reactor[J]. Bioresource Technology, 2012, 104: 136-143
[16] Großkopf R, Janssen P H, Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval[J]. Applied and Environmental Microbiology, 1998, 64(3): 960-969
[17] Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments [J]. FEMS Microbiology Ecology, 2006, 28: 193-202
[18] Calli B, Mertoglu B, Roest K, et al. Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate [J]. Bioresource Technology, 2006, 97(4): 641-647
[19] Fey A, Claus P, Conrad R. Temporal change of 13C-isotope signatures and methanogenic pathways in rice field soil incubated anoxically at different temperatures [J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 293-306
[20] Conrad R, Klose M, Noll M. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change[J]. Environ. Microbiol., 2009, 11: 1844-1853
[21] Wu X L, Friedrich M W, Conrad R. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils [J]. Environ. Microbiol., 2006, 8: 394-404
[22] Qu Xian(瞿贤), He Pinjing(何品晶). Effect of temperature on methanogenic pathway during household waste anaerobic digestion by stable carbon isotopic signature of CH4 [J]. Environmental Science(环境科学), 2008, 29(11) : 3252-3257
[23] Lu Y, Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere [J]. Science, 2005, 309: 1088-1090
[24] Ahring B K, rahim A A, adenovska Z. Effect of temperature increase from 55℃ to 65℃ on performance and microbial population dynamics of an anaerobic reactor treating cattle manure [J].Water Research, 2001, 35: 2446-2452
[25] Wang Changwen(王长文), Pu Guibing(蒲贵兵), Lü Bo(吕波), He Dong(何东), Yin Hongjun(尹洪军). Study on approaches to reduce hydrogen partial pressure during anaerobic digestion of sewage sludge [J]. Chemistry & Bioengineering(化学与生物工程), 2010, 27(4): 79-82
[26] Burggraf S, Fricke H, Neuner A, Kristjansson J, Rouvier P, Mandelco L, Woese C R, Stetter K O. Methanococcus igneus sp. nov.,a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system[J]. Syst. Appl. Microbiol., 1990, 13: 263-269
[27] Fiala G, Stetter K O. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100℃[J]. Arch. Microbiol, 1986, 145: 56-61
[28] Takai K, et al. Cell proliferation at 122℃ and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation[J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 10949-10954
[29] Liu Haichang(刘海昌), Lan Guihong(兰贵红). Isolation and identification of a methanogen from the high temperature oil reservoir water [J]. China J. Biotech.(生物工程学报), 2010, 26(7): 1009-1013
[30] Yang Wei(杨薇). Industry prospect and specific properties of methanogens [J]. Anhui Chemical Industry(安徽化工), 2010(4): 10-13
[1] 陈政, 王莉, 周健. 双响应性嵌段聚合物的纳米孔开关效应的计算机模拟[J]. 化工学报, 2019, 70(1): 271-279.
[2] 陈天华, 张若思, 姜国珍, 姚明东, 刘宏, 王颖, 肖文海, 元英进. 产蒎烯人工酵母细胞的构建[J]. 化工学报, 2019, 70(1): 179-188.
[3] 陈宇飞, 耿成宝, 楚洪月, 汪波涛, 郭红缘, 岳春艳. 蒙脱土/聚醚砜-双马来酰亚胺复合材料微观形貌及性能[J]. 化工学报, 2018, 69(S1): 148-154.
[4] 王学良, 李宏光. 一种人工情感神经网络及其应用[J]. 化工学报, 2018, 69(S1): 80-86.
[5] 郑立刚, 王亚磊, 于水军, 朱小超, 李刚, 杜德朋, 窦增果. NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析[J]. 化工学报, 2018, 69(9): 4129-4136.
[6] 贾晓霞, 王丽, 元宁, 杨江峰, 李晋平. 二价铬/钼/镍空配位MOFs的CH4/N2吸附分离研究[J]. 化工学报, 2018, 69(9): 3896-3904.
[7] 杨庆, 杨玉兵, 李健敏, 冯红利, 周薛扬, 刘秀红. 短程硝化耦合厌氧氨氧化工艺处理低C/N比生活污水[J]. 化工学报, 2018, 69(8): 3635-3642.
[8] 张杰, 李涛. 甲烷化梅花状催化剂CFD计算及改进[J]. 化工学报, 2018, 69(7): 2985-2992.
[9] 田海锋, 姚璐, 高佳良, 查飞, 郭效军. 硅烷化和有机弱碱改性Mo/HZSM-5对甲烷无氧芳构化催化性能的影响[J]. 化工学报, 2018, 69(7): 3009-3017.
[10] 李海燕, 刘欢, 汪家兴, 金明灏, 邓红苹, 卢更, 张秀菊, 姚洪. 基于化学改性的脱水污泥低温热风干化特性[J]. 化工学报, 2018, 69(7): 3257-3262.
[11] 张良, 刘啸尘, 刘桂艳, 吕波, 冯旭东, 李春. 生物转化过程中的能量驱动与再生[J]. 化工学报, 2018, 69(7): 2807-2814.
[12] 邓小宁, 叶媛媛, 周新凯, 程玉娥, 林春绵. 外源H2对沼气发酵体系的影响[J]. 化工学报, 2018, 69(7): 3226-3233.
[13] 李汉卿, 王长安, 朱晨钊, 赵磊, 韩涛, 车得福. O2/CO2气氛对准东煤灰熔融行为和微观理化特性的影响[J]. 化工学报, 2018, 69(6): 2632-2638.
[14] 高岩, 赵忠盖, 刘飞. 基于动态代谢通量分析的发酵过程多目标优化[J]. 化工学报, 2018, 69(6): 2594-2602.
[15] 崔锡民, 鹿院卫, 吴玉庭, 马重芳. 温度分层对小型熔盐单罐释热过程影响[J]. 化工学报, 2018, 69(6): 2410-2416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!