化工学报 ›› 2014, Vol. 65 ›› Issue (1): 337-345.doi: 10.3969/j.issn.0438-1157.2014.01.044

• 材料化学工程与纳米技术 • 上一篇    下一篇


李雪娃, 赵世雄, 吴斌, 安德, 王宇新   

  1. 天津大学化工学院, 化学工程联合国家重点实验室, 天津 300072
  • 收稿日期:2013-05-28 修回日期:2013-09-17 出版日期:2014-01-05
  • 通讯作者: 王宇新 E-mail:yxwang@tju.edu.cn
  • 作者简介:李雪娃(1987-),女,硕士研究生。
  • 基金资助:


Electric field-assisted preparation of aligned MWCNTs/polystyrene composite membranes for enhanced gas separation performance

LI Xuewa, ZHAO Shixiong, WU Bin, AN De, WANG Yuxin   

  1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2013-05-28 Revised:2013-09-17 Online:2014-01-05
  • Supported by:

    supported by the National Natural Science Foundation of China (2012BGH-0001) and the Natural Science Foundation of Tianjin (11JCZDJC23800).

摘要: 采用溶液浇铸法制备了不同含量多壁碳纳米管(MWCNTs)和聚苯乙烯(PS)掺杂的气体分离复合膜,成膜过程中在垂直于铸膜液平面的方向上施加场强为2000 V·cm-1,频率为1 Hz的交变电场,直至溶剂挥发完全。采用荧光分光光度计、体式显微镜和数字万用表考察了膜的荧光特性,铸膜液中MWCNTs对水平电场的响应,MWCNTs在膜中的分散情况以及膜的垂直向电阻率,测定了复合膜对CO2、CH4的渗透系数。结果表明电场作用不仅可以实现MWCNTs在膜中的定向排布,还能够使MWCNTs在膜中分散得更均匀,定向复合膜CO2和CH4的透过性和选择性都优于非定向复合膜。

关键词: 碳纳米管, 复合膜, 电场, 定向, 分离, 二氧化碳, 甲烷

Abstract: Incorporation of particulate fillers in a membrane matrix has been proven effective in improving the separation performance of the membrane. This study explored the possibility of casting fillers embedded membranes with the assistance of alternating electric field to further improve the membrane performance in gas separation. Composite membranes with varying contents of multi-walled carbon nanotubes (MWCNTs) dispersed in polystyrene (PS) were prepared. In order to align the MWCNTs in the membrane, an alternating electric field of 2000 V·cm-1, 1 Hz was vertically applied on the pre-membrane solution until the solvent was evaporated completely. Electro-casting achieved not only vertical alignment but also more uniform dispersion of MWCNTs in the membrane matrix. The electro-cast composite membranes showed higher permeability of both carbon dioxide and methane, but the increment of the former was higher than the latter, resulting in improved selectivity of the membrane.

Key words: MWCNTs, composite membrane, electric field, align, separation, carbon dioxide, methane


  • TQ028.8
[1] Buonomenna M G, Yave W, Golemme G. Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes[J]. RSC Adv., 2012, 29(2):10745-10773
[2] Budd P M, McKeown N B. Highly permeable polymers for gas separation membranes[J]. Polym. Chem., 2010, 1(1):63-68
[3] Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J. Membr. Sci., 1991, 62(12):165-185
[4] Aroon M A, Ismail A F, Matsuura T, Montazer-Rahmati M M. Performance studies of mixed matrix membranes for gas separation: a review[J]. Sep. Purif. Technol., 2010, 75(3):229-242
[5] Chung T S, Jiang L Y, Li Y, Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Prog. Polym. Sci., 2007, 32(4):483-507
[6] Cong H L, Radosz M, Towler B F, Shen Y Q. Polymer-inorganic nanocomposite membranes for gas separation[J]. Sep. Purif.Technol., 2007, 55(3):281-291
[7] Goh P S, Ismail A F, Sanip S M, Ng B C, Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation[J]. Sep. Purif. Technol., 2011, 81(3):243-264
[8] Romero A I, Parentis M L, Habert A C, Gonzo E E. Synthesis of polyetherimide/silica hybrid membranes by the sol-gel process: influence of the reaction conditions on the membrane properties[J]. J. Mater. Sci., 2011, 46(13):4701-4709
[9] Ismail A F, Rahim N H, Mustafa A, Matsuura T, Ng B C, Abdullah S, Hashemifard S A. Gas separation performance of polyethersulfone/ multi-walled carbon nanotubes mixed matrix membranes[J]. Sep. Purif. Technol., 2011, 80(1):20-31
[10] Kumar S, Sharma A, Tripathi B. Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes[J]. Micron, 2010, 41(7):909-914
[11] Ruan S L, Gao P, Yang X G, Tu T X. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes[J]. Polymer, 2003, 44(19):5643-5654
[12] Ismail A F, Goh P S, Sanip S M, Aziz M. Transport and separation properties of carbon nanotube-mixed matrix membrane[J]. Sep. Purif. Technol., 2009, 70(1):12-26
[13] Sanip S M, Ismail A F, Goh P S, Ng B C, Abdullah M S, Soga T, Tanemura M, Yasuhiko H. Preparation and characteristics of functionalized multiwalled carbon nanotubes in polyimide mixed matrix membrane[J]. NANO, 2010, 5(4):195-202
[14] Kim S, Pechar T W, Marand E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation[J]. Desalination, 2006, 192(1/2/3):330-339
[15] Skoulidas A I, Ackerman D M, Johnson J K, Sholl D S. Rapid transport of gases in carbon nanotubes[J]. Phys. Rev. Lett., 2002, 89(18):185901
[16] Ackerman D M, Skoulidas A I, Sholl D S, Johnson J K. Diffusivities of Ar and Ne in carbon nanotubes[J]. Mol. Simul., 2003, 29(10/11): 677-684
[17] Skoulidas A I, Sholl D S, Johnson J K. Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes[J]. J. Chem. Phys., 2006, 124(5): 054708
[18] Sokhan V P, Nicholson D, Quirke N. Fluid flow in nanopores: accurate boundary conditions for carbon nanotubes[J]. J. Chem. Phys., 2002, 117(18):8531-8539
[19] Ge L, Zhu Z H, Li F, Liu S M, Wang L, Tang X G, Rudolph V. Investigation of gas permeability in carbon nanotube (CNT)-polymer matrix membranes via modifying CNTs with functional groups/metals and controlling modification location[J]. J. Phys. Chem. C, 2011, 115(14):6661-6670
[20] Romyen N, Thongyai S, Praserthdam P. Alignment of carbon nanotubes in polyimide under electric and magnetic fields[J]. J. Appl. Polym. Sci., 2012, 123(6):3470-3475
[21] Oliva-Avile's A I, Avile's F, Sosa V. Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field[J]. Carbon, 2011, 49(9):2989-2997
[22] Kumar S, Srivastava S, Vijay Y K. Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes[J]. Int. J. Hydrogen Energy, 2011, 37(4):3914-3921
[23] Sharma A, Kumar S, Tripathi B. Aligned CNT/polymer nanocomposite membranes for hydrogen separation[J]. Int. J. Hydrogen Energy, 2009, 34(9):3977-3982
[24] Sharma A, Vijay Y K. Effect of electric field variation in alignment of SWNT/PC nanocomposites[J]. Int. J. Hydrogen Energy, 2012, 37(4):3945-3948
[25] Cong H L, Zhang J M, Radosz M, Shen Y Q. Carbon nanotube composite membranes of brominated poly(2, 6-diphenyl-1, 4-phenylene oxide) for gas separation[J]. J. Membr. Sci., 2007, 294(1/2): 178-185
[26] Ge L, Zhu Z H, Rudolph V. Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane[J]. Sep. Purif. Technol., 2011, 78(1):76-82
[27] Higuchi A, Agatsuma T, Uemiya S, Kojima T, Mizoguchi K, Pinnau I, Nagai K, Freeman B D. Preparation and gas permeation of immobilized fullerene membranes[J]. J. Appl. Polym. Sci., 2000, 77(3):529-537
[28] Sun Wenxiu(孙文秀), Huang Zhipeng(黄智鹏), Zhang Lu(张鹭), Zhu Jing(朱静). Studies on fluorescent properties of multi-walled carbon nanotubes before and after concentrated nitric acid treatment[J]. Spectrosc. & Spectr. Anal.(光谱学与光谱分析), 2005, 25(1):10-12
[29] Luo Y S, Xia X H, Liang Y, Zhang Y G, Ren Q F, Li J L, Jia Z J, Tang Y W. Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWCNTs[J]. J. Solid State. Chem., 2007, 180(6):1928-1933
[30] Qiao Jie(乔洁), Tang Shengnan(唐胜男), Dong Chuan(董川). Studies on spectrum and electrical properties of functioned multi-walled carbon nanotubes[J]. J. SX. Univi.:Nat. Sci. Ed.(山西大学学报:自然科学版), 2008, 31(2):207-210
[31] Okotrub A V, Kanygin M A, Sedelnikova O V, Gusel'nikov A V, Belavin V V, Kotosonov A S, Bulusheva L G. Interaction of ultrasoft X-rays with arrays of aligned carbon nanotubes[J]. J. Nanophotonics, 2010, 4(1):041655-041655
[32] Stoy R D. Interactive dipole model for two-sphere system[J]. Journal of Electrostatics, 1994, 33(3): 385-392.
[33] Ma C, Zhang W, Zhu Y F, Ji L J, Zhang R P, Koratkar N, Liang J. Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field[J]. Carbon, 2008, 46(4):706-710
[34] Yang X Z, Zhu Y F, Ji L J, Zhang C, Liang J. Influence of AC electric field on macroscopic network of carbon nanotubes in polystyrene[J]. J. Dispersion Sci. Technol., 2007, 28(8):1164-1168
[35] Nakatsuka Y, Kiyohara S, Ikeda M, Tanaka K, Akiwama R. Dispersion and redispersion methods for dispersoids as well as crush method for aggregated dispersoids, and devices therefor[P]: EP, 1870156. 2007-12-26
[36] Mohanty K K, Ottino J M, Davis H T. Reaction and transport in disordered composite media: introduction of percolation concepts[J]. Chem. Eng. Sci., 1982, 37(6): 905-924
[37] Bao H D, Sun Y, Xiong Z Y, Guo Z X, Yu J. Effects of the dispersion state and aspect ratio of carbon nanotubes on their electrical percolation threshold in a polymer[J]. J. Appl. Polym. Sci., 2013, 128(1):735-740
[38] Penu C, Hu G H, Fernandez A, Marchal P, Choplin L. Rheological and electrical percolation threshold of carbon nanotube/polymer nanocomposites[J]. Polym. Eng. Sci., 2012, 52(10):2173-2181
[39] Hermant M C, Smeets N M B, Meuldijk J, van Hal R C F, Heuts H P A, Klumperman B, van Herk A M, Koning C E. Influence of the molecular weight distribution on the percolation threshold of carbon nanotube-polystyrene composites[J]. E-polymers, 2009, 2009(22): 1-13
[40] Puleo A C, Muruganandam N, Paul D R. Gas sorption and transport in substituted polystyrenes[J]. J. Polym. Sci.: Part B: Polym. Phys., 1989, 27(11):2385-2406
[41] Huang L L, Zhang L Z, Shao Q, Lu L H, Lu X H, Jiang S Y, Shen W F. Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects[J]. J. Phys. Chem. C, 2007, 111(32):11912-11920
[1] 刘忠彦, 孙大汉, 金旭, 王天皓, 马一太. CO2管内流动沸腾换热模型评价研究[J]. 化工学报, 2019, 70(1): 56-64.
[2] 王子宗, 刘洪谦, 王基铭. 甲醇制丙烯分离流程的研究与优化[J]. 化工学报, 2019, 70(1): 136-145.
[3] 李静岩, 刘中良, 周宇, 李艳霞. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82.
[4] 熊攀, 鄢曙光, 刘玮寅. 基于响应曲面法的旋风分离器结构优化[J]. 化工学报, 2019, 70(1): 154-160.
[5] 王财林, 顾帅威, 李玉星, 胡其会, 滕霖, 王婧涵, 马宏涛, 张大同. CO2-原油体系发泡特性实验研究[J]. 化工学报, 2019, 70(1): 251-260.
[6] 杜东兴, 郑利晨, 张旭, 孙国龙, 李莺歌, 巢昆. 多孔介质内超临界CO2流体及泡沫驱油特性的比较实验研究[J]. 化工学报, 2018, 69(S1): 58-63.
[7] 陈宇飞, 耿成宝, 楚洪月, 汪波涛, 郭红缘, 岳春艳. 蒙脱土/聚醚砜-双马来酰亚胺复合材料微观形貌及性能[J]. 化工学报, 2018, 69(S1): 148-154.
[8] 郑立刚, 王亚磊, 于水军, 朱小超, 李刚, 杜德朋, 窦增果. NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析[J]. 化工学报, 2018, 69(9): 4129-4136.
[9] 沈天绪, 吴建, 闫景春, 沈来宏. 双级燃料反应器的煤化学链燃烧特性[J]. 化工学报, 2018, 69(9): 3965-3974.
[10] 徐令君, 王淑娟. [Bmim][BF4]/MEA混合水溶液的CO2汽液平衡和解吸能耗分析[J]. 化工学报, 2018, 69(9): 3879-3886.
[11] 贾晓霞, 王丽, 元宁, 杨江峰, 李晋平. 二价铬/钼/镍空配位MOFs的CH4/N2吸附分离研究[J]. 化工学报, 2018, 69(9): 3896-3904.
[12] 何凯武, 唐思扬, 刘长军, 岳海荣, 梁斌. 有机胺功能化介孔固体吸附剂吸附分离CO2性能研究[J]. 化工学报, 2018, 69(9): 3887-3895.
[13] 姚瑛瑛, 郭莉, 胡中求, 全瞿, 杜冬云. 超声辅助碱浸铜冶炼烟灰中铜砷分离[J]. 化工学报, 2018, 69(9): 3983-3992.
[14] 殷上轶, 宋涛. CO2气氛下准东煤化学链燃烧特性研究[J]. 化工学报, 2018, 69(9): 3954-3964.
[15] 王璐, 张兴芳, 董振洲, 赵忠凯, 杨景轩, 郝晓刚. 旋风分离器入口形式对内流场非稳态特性的影响[J]. 化工学报, 2018, 69(8): 3488-3501.
Full text



No Suggested Reading articles found!