化工学报 ›› 2013, Vol. 64 ›› Issue (3): 1091-1098.doi: 10.3969/j.issn.0438-1157.2013.03.043

• 能源和环境工程 • 上一篇    下一篇

高分散型纳米级Pd/Fe对4-氯苯酚的还原脱氯

赵德明1, 李敏1, 徐新华2   

  1. 1. 浙江工业大学化学工程与材料学院,浙江 杭州 310032;
    2. 浙江大学环境与资源学院,浙江 杭州 310027
  • 收稿日期:2012-07-16 修回日期:2012-10-11 出版日期:2013-03-05
  • 通讯作者: 赵德明(1976—),男,副教授,博士后。
  • 作者简介:赵德明(1976—),男,副教授,博士后。
  • 基金资助:

    浙江省自然科学基金项目(Y5100075);浙江省科技厅公益技术研究社会发展项目(2012C23044)。

Reductive dechlorination of 4-chlorophenol by highly dispersed Pd/Fe nanoparticles

ZHAO Deming1, LI Min1, XU Xinhua2   

  1. 1. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China;
    2. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2012-07-16 Revised:2012-10-11 Online:2013-03-05
  • Supported by:

    supported by the Natural Science Foundation of Zhejiang Province(Y5100075)and the Science and Technology Department of Zhejiang Province(2012C23044).

关键词: 超声波, 高分散型纳米级Pd/Fe, 4-氯苯酚, 动力学

Abstract: Highly dispersed Pd/Fe nanoparticles were prepared by using ultrasound-assisted liquid phase reductive method,and used for reductive dechlorination of 4-chlorophenol(4-CP).The affecting factors and degradation kinetics were investigated.The experimental results showed that:obvious modification was achieved on the particle size,most of them less than 100nm,and on specific surface areas,increased 43.42%.The efficiency of 4-CP reductive dechlorination was up to 97% on the Pd/Fe nanoparticles with Pd mass fraction 0.2% and its dosage 2.5 g·L-1 at the conditions:time 300 min,initial 4-CP concentration 20 mg·L-1,pH value 3.0,and reaction temperature 30℃.The degradation reaction of 4-CP followed pseudo-first-order kinetics and the apparent pseudo-first-order kinetics constant was 1.76×10-2 min-1.

Key words: ultrasound, highly dispersed Pd/Fe nanoparticles, 4-chlorophenol, kinetics

中图分类号: 

  • X78
[1] Zeng Zhaohua(曾兆华),Wan Jiwei(万继伟).Review on the bioremediation of environment polluted by hard degradable chlorinated organics[J].Pollution Control Technology(污染防治技术),2011,24(3):62-65
[2] Xu Xinhua(徐新华),Jin Jian(金剑),Wei Jianjun(卫建军),Wang Dahui(汪大翚).Dechlorination mechanism and kinetic of 2,4-DCP by nanoscale Pd/Fe system[J].Acta Scientiae Circumstantiae(环境科学学报),2004,24(4):561-568
[3] Zhang Z,Shen Q,Cissoko N,Wo J J,Xu X H.Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid[J].Journal of Hazardous Materials,2010,182(1/2/3):252-258
[4] Zhou T,Lim T T,Lu X H,Li Y Z,Wong F S. Simultaneous degradation of 4-CP and EDTA in a heterogeneous ultrasound/Fenton like system at ambient circumstance[J].Separation and Purification Technology,2009,68(3):367-374
[5] Lim D H,Lastoskie C M.Density functional theory studies on the relative reactivity of chloroethenes on zerovalent iron[J].Environ.Sci.Technol.,2009,43(14):5443-5448
[6] Kim J H,Tratnyek P G,Chang Y K.Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron[J].Environ.Sci.Technol.,2008,42(11):4106-4112
[7] Zhuang Y,Ahn S,Seyfferth A L,Masue-Slowey Y,Fendorf S,Luthy R G.Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic,impregnated,and nanoscale zerovalent iron[J].Environ. Sci. Technol.,2011,45(11):4896-4903
[8] Wei J J,Xu X H,Liu Y,Wang D H.Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe:reaction pathway and some experimental parameters[J].Water Research,2006,40:348-354
[9] Xu X H,Zhou H Y,He P,Wang D H.Catalytic dechlorination kinetics of p-dichlorobenzene over Pd/Fe catalysts[J].Chemosphere,2005,58:1135-1140
[10] Lü Weizhong(吕维忠),Liu Bo(刘波),Luo Zhongkuan(罗仲宽),Ren Xiangzhong(任祥忠),Cai Honghua(蔡弘华),Zhang Peixin(张培新),Liu Jianhong(刘剑洪).Influence factors of nanosized ZnFe2O4 powders spine prepared by a sonochemical method[J].Journal of Materials Science & Engineering(材料科学与工程学报),2007,25(5):686-689
[11] Nikitenko S,Koltypin Y,Palchik O,Felner I,Xu X N,Gedanken A.Synthesis of highly magnetic,air-stable iron-iron carbide nanocrystalline particles by using power ultrasound[J].Angewandte Chemie International Edition,2001,40:4447-4449
[12] Nikitenko S,Koltypin Y,Yeshurun I, Shames A I,Jiang J Z,Markovich V,Gorodetsky G,Gedanken A.Tailoring the properties of Fe-Fe3C nanocrystalline particles prepared by sonochemistry[J].Journal of Physical Chemistry B,2004,108:7620-7626
[13] Zhang Zhen(张珍).Degradation of 2,4-dichlorophenol by bimetallic nanoparticles in the presence of humic acid .Hangzhou:Zhejiang University,2008
[14] Arnold W A,Roberts A L.Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe0 particles[J].Environ.Sci.Technol.,2000,34(9):1794-1805
[15] Zhu Chuanzheng(朱传征),Chu Ying(褚莹),Xu Haihan(许海涵).Physical Chemistry(物理化学)[M].Beijing:Science Press,2008
[16] Sandler S I.Chemical and Engineering Thermodynamics[M].3rd ed.Beijing:Chemical Industry Press,2002
[17] Nurmi J T,Tratnyek P G,Sarathy V,Baer D R,Amonette J E,Pecher K,Wang C M,Linehan J C,Matson D W,Penn R L,Driessen M D.Characterization and properties of metallic iron nanoparticles:spectroscopy,electrochemistry,and kinetics[J].Environ. Sci. Technol.,2005,39:1221-1230
[18] Kim Y H,Carraway E R.Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons[J].Environ.Sci.Technol.,2000,34:2014-2017
[19] Cheng R,Wang J,Zhang W X.Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized Fe0[J].Journal of Hazardous Materials,2007,144(1/2):334-339
[1] 邓伟峰, 蒋珍华, 刘少帅, 张安阔, 吴亦农. 高温区大冷量脉管制冷机优化设计与实验特性[J]. 化工学报, 2019, 70(1): 107-115.
[2] 丁炯, 陈琪, 许启跃, 杨遂军, 叶树亮. 融合C80数据的绝热加速量热法热惯量因子修正[J]. 化工学报, 2019, 70(1): 417-424.
[3] 陈亮, 赵帆, 闫广精, 王春波. H2O和SO2对CFB内石灰石同时煅烧/硫化反应中煅烧动力学的协同作用[J]. 化工学报, 2018, 69(9): 3859-3868.
[4] 朱礼涛, 罗正鸿. 磁共振成像应用于多相流体动力学研究进展[J]. 化工学报, 2018, 69(9): 3765-3773.
[5] 姚瑛瑛, 郭莉, 胡中求, 全瞿, 杜冬云. 超声辅助碱浸铜冶炼烟灰中铜砷分离[J]. 化工学报, 2018, 69(9): 3983-3992.
[6] 王瑞, 许妍霞, 宋兴福, 徐志刚, 于建国. 对二甲苯降膜结晶动力学[J]. 化工学报, 2018, 69(8): 3460-3468.
[7] 张锦萍, 王长安, 贾晓威, 王鹏乾, 车得福. 半焦-烟煤混燃特性及动力学分析[J]. 化工学报, 2018, 69(8): 3611-3618.
[8] 齐畅, 卢滇楠, 刘永民. 优化温度相关力场预测正构烷烃热力学性质[J]. 化工学报, 2018, 69(8): 3338-3347.
[9] 张志潮, 刘晶, 杨应举, 张振. 燃煤锅炉烟气中Na2SO4生成的化学动力学研究[J]. 化工学报, 2018, 69(8): 3643-3650.
[10] 宋睿, 金光远, 崔政伟, 宋春芳, 陈海英. 酯交换反应体系混合物料的介电特性[J]. 化工学报, 2018, 69(8): 3670-3677.
[11] 姜鹏, 王琨, 谯敏, 李俊峰, 薛云翔, 黄卫星. 气液两相并流下行通过堆叠筛板填料的压降特性[J]. 化工学报, 2018, 69(8): 3373-3382.
[12] 温玉娟, 杨悦锁, 宋晓明, 张茜, 李惠中. 氧化铁砂SAT去除对硝基苯酚的吸附行为及性能研究[J]. 化工学报, 2018, 69(7): 3059-3067.
[13] 韩海波, 王有和, 李康, 刘丹禾, 郝代军, 阎子峰. 超声波碱处理改性对丝光沸石结构、酸性质及其催化性能的影响[J]. 化工学报, 2018, 69(7): 3001-3008.
[14] 张杰, 李涛. 甲烷化梅花状催化剂CFD计算及改进[J]. 化工学报, 2018, 69(7): 2985-2992.
[15] 周鹏, 袁花, 彭平英, 姚津鑫, 彭志远. 球形聚合单宁-纤维素树脂的制备及吸附性能[J]. 化工学报, 2018, 69(7): 3076-3082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!